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Abstract: This review focuses on the most suitable form of hydrodynamic modeling for the next
generation wave energy converter (WEC) design tools. To design and optimize a WEC, it is estimated
that several million hours of operation must be simulated, perhaps one million hours of WEC
simulation per year of the R&D program. This level of coverage is possible with linear potential flow
(LPF) models, but the fidelity of the physics included is not adequate. Conversely, while Reynolds
averaged Navier–Stokes (RANS) type computational fluid dynamics (CFD) solvers provide a high
fidelity representation of the physics, the increased computational burden of these models renders
the required amount of simulations infeasible. To scope the fast, high fidelity options, the present
literature review aims to focus on what CFD theories exist intermediate to LPF and RANS as well as
other modeling options that are computationally fast while retaining higher fidelity than LPF.

Keywords: wave energy; hydrodynamics; nonlinear; CFD

1. Introduction

The development of commercial WEC technology is a complex and challenging endeavor.
Weber et al. [1] outlined an improved WEC technology development methodology, by introducing a
novel Technology Performance Level (TPL) metric to complement the more widely used Technology
Readiness Level (TRL) metric (depicted in Figure 1a), and detail an overall R&D management
philosophy that is tailored to the challenges of WEC development. Work following from [1] has
focused on the development of the TPL metric [2], on a combination of the new approach with
the discipline of Systems Engineering [3], on the application of the TRIZ Structured Innovation
methodology [4], and on the risk analysis for WEC product development [5]. This paper explores one
of the other needs identified in [1], namely the need for reliable, robust, and affordable simulations of
WEC technology.

1.1. R&D Context for WEC Simulation

The WEC R&D management philosophy described in [1], may be termed the Performance before
Readiness philosophy. Pursuing a Performance before Readiness approach reduces the cost of product
development and increases the probability of market entry. A central component of this approach is
making performance improvements at early stages in the R&D program by maintaining the flexibility
of concept and conducting evaluation and optimization of many alternative concepts, while still at low
TRL (depicted by trajectory A in Figure 1b). Conversely, the alternative Readiness before Performance
approach (depicted by trajectory B in Figure 1b), reduces the probability of market entry and, in wave
energy, virtually guarantees bankruptcy [1].
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Figure 1. (a) The Technology Readiness Level (TRL)–Technology Performance Level (TPL) matrix:
wave energy converter (WEC) technology value map. (b) The TRL-TPL matrix, highlighting two
different development trajectories to commercial viability: Path A represents the Performance before
Readiness approach, and Path B is a more expensive trajectory (adapated from Weber et al. [1]).

Making performance improvements requires reliable and affordable performance estimates,
which brings WEC simulation into the spotlight. It is uneconomical to obtain performance estimates,
for a wide diversity of concepts at low TRL, using a program that relies exclusively on experimentally
derived results. Software simulation is one of the key enabling technologies that will facilitate the
Performance before Readiness approach.

1.2. Requirements of WEC Simulation

A particular need is a WEC simulation that is suitable for automatic optimization. Techno-Economic
(combined engineering and financial) optimization, is specifically anticipated in [1], but any kind of
WEC optimization, with or without financial objective functions, still requires a WEC simulation that
is suitable for automatic optimization. To be suitable for automatic optimization, a simulation must
satisfy the following requirements:

(a) Fidelity requirement—be reliable for all possible trial vectors that an optimization algorithm
might generate for evaluation,

(b) Flexibility requirement—be general enough to be applicable to a wide variety of candidate WEC
concepts, and

(c) Computational requirement—be fast/affordable enough to allow sufficient generations or
iterations to be completed in practical time scales on available and affordable hardware.

1.3. Objective of Scoping Study

Arguably none of the well established WEC simulation approaches satisfy all the requirements
for an ideal simulation tool for WEC design. Most approaches to WEC simulation can be characterized
by a position on a speed-fidelity spectrum. One extreme of the spectrum is high speed but low fidelity,
while the opposite extreme of the spectrum is low speed but high fidelity. The two well-established
approaches to WEC simulation occupy these opposite extremes:

• At the low-fidelity/high-speed end of the spectrum are methods based on LPF, including
frequency-domain methods [6], Cummins equation time-domain methods [7], and extensions of
Cummins methods, such as the Nonlinear Froude–Krylov (NLFK) approach (see Section 3.6.2).

• At the high-fidelity/low-speed end of the spectrum are approaches based on RANS CFD codes
(see review in [8]). Schmitt et al. [9] present the challenges and advantages for the application
of RANS-based methods in the design process of a WEC, concluding the major drawback is the
significant computational power required.
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Mature software packages, both commercial and open-source, based on the opposite extremes
of the speed-fidelity spectrum are available and their properties are relatively well known. It is the
contention of the authors that neither of these mature approaches satisfies the requirements for an
ideal WEC simulation tool, the fast methods are not accurate or robust enough and the accurate
methods are not fast or affordable enough. We propose that a specialist WEC simulation tool based on
an intermediate CFD theory is needed. CFD Theories that are intermediate to LPF and RANS exist,
but compared to LPF and RANS are relatively under-developed with few commercial or open-source
software products available and knowledge of the properties of these approaches is often only available
to the creators of research codes. In this paper, we set out to review the CFD theories and related
methods that are intermediate to LPF and RANS with a view to identifying promising avenues for a
specialist WEC simulation tool.

1.4. Previous Reviews

A very early comparison of numerical methods in free-surface hydrodynamics can be found in
Yeung [10] from the Hydrodynamics of Ocean Wave-Energy Utilization Symposium in 1985. Nearly three
decades later, in 2012, Li and Yu [11] reviewed the modeling methods available for point absorber type
WECs. In the same year, Folley et al. [12] reviewed hydrodynamic modeling for WEC arrays, which
were again later reviewed in DeChowdhury et al. [13]. Nonlinear hydrodynamic modeling of WECs is
the focus of the reviews in Wolgamot and Fitzgerald [14] and Penalba et al. [15], whereas the reviews in
Windt et al. [8] and Zullah et al. [16] specifically focus on RANS modeling of WECs. Zabala et al. [17]
review integrated approaches to numerical and experimental testing, from full-scale prototype and
physical wave tank (PWT) models to RANS and LPF simulations. Saincher and Banerjee [18] review
the influence of wave breaking on WEC hydrodynamics. Whereas the reviews in Coe et al. [19,20]
focus on the modeling methods for WEC survival in extreme seas. In addition, a good book detailing
the current state-of-the-art in WEC hydrodynamic modeling was recently published in 2016 [21].

1.5. Outline

Mathematical modeling of nonlinear WEC hydrodynamics require a venture from physics to
numerics. Increasing the computational efficiency can, therefore, be pursued through prudent selection
of the relevant physical effects to be modeled, a parsimonious mathematical description of the selected
effects and an efficient numerical scheme to solve the governing equations. Considering the physics,
Section 2 presents the different types of nonlinear hydrodynamic effects a WEC may be subjected to and
the conditions under which these effects are relevant. Next, turning to the mathematics, the governing
system of equations for fluid dynamics, the Navier–Stokes equations (NSE) are introduced and their
role in hydrodynamic modeling for WECs discussed. The spectrum of numerical schemes, with varying
complexity and fidelity, utilized to solve the NSE are then presented to set the scene for the following
sections, which collate and review the literature, laid out as follows:

• Section 3 reviews the CFD theories intermediate to RANS and LPF, which simplify the NSEs yet
retain the potential to simulate nonlinear WEC hydrodynamics.

• Section 4 reviews the use of Domain Decomposition, which aims to reduce the required
computational overhead of high fidelity CFD codes, by simulating the bulk of the computational
domain with a lower fidelity model with fast computational speed, while only simulating the area
in the immediate vicinity of the WEC with computationally expensive, higher fidelity models.

• Section 5 then reviews computationally fast modeling techniques, capable of simulating WEC
performance with a high fidelity that includes nonlinear effects, but at a fraction of the
computational cost of the NSE-type CFD simulations reviewed in Sections 3 and 4.

Section 6 discusses the main points gathered from Sections 3–5, in particular, those methods which
have the potential of performing efficient simulations to aid in WEC design, and provides a tabulated
comparison of the different methods reviewed. Conclusions are presented in Section 7.
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2. Efficient Nonlinear Hydrodynamic Models for WECs

A good description of WEC hydrodynamics is given in Todalshaug [22], detailing the fundamental
principles of wave absorption and hydrodynamic forces on bodies. The traditional modeling approach
treats the hydrodynamic forces linearly (see Falnes [23] for an in-depth description), for time domain [7]
and/or frequency domain [6] analyses of the WEC based on LPF. Correspondingly, this type of
modeling approach leads to a linear relationship between the input wave and the output WEC motion.
Thus, if the wave height is doubled, the resulting amplitude of WEC motion also doubles. However,
in reality, this does not hold for a large portion of the simulations required for WEC design, due to
nonlinear effects. Section 2.1 discusses the types of nonlinearities which can appear during WEC
operation and Section 2.2 details the factors which influence the prevalence or absence of these
nonlinearities in WECs. Modeling these nonlinearities requires a more thorough treatment of the NSE,
without the full range of linearing assumptions inherent to LPF, as detailed in Section 2.3.

2.1. Hydrodynamic Nonlinearities—Types

There are three main physical effects, neglected in the linear formulation, which give rise to
hydrodynamic nonlinearities: viscosity, nonlinear waves, and time-varying wetted body surface.
The nonlinear viscous effects are omitted in the linearization of the equations, discussed in Section 3.1.1,
whereas the effects of the nonlinear waves and time-varying wetted body surface are omitted in the
linearization of the boundary conditions, as discussed in Section 3.1.2.

2.1.1. Viscosity

Viscosity gives rise to drag forces, resulting from pressure/form drag and skin friction drag.
For WECs, pressure drag is the main contributor and skin friction is typically negligible [22]. Pressure
drag is caused by flow separation and vortex shedding, whose force on the WEC is nonlinear, increasing
quadratically with the relative WEC-water velocity.

In marine hydrodynamics, the relative importance of viscous forces increases as the size of the
body decreases [24]. Therefore, in many offshore engineering applications, neglecting viscous effects
to enable a linear formulation of hydrodynamics is a valid approximation, owing to the large size of
the structures, such as ships and floating oil platforms. For WECs however, the characteristic lengths
are generally much smaller and the role of viscosity can be important. WECs also differ from most
offshore structures, in that they are designed to resonate with the input waves, whereby the large
amplitude wave-driven motions result in increased relative WEC-water velocity.

Neglecting viscosity in WEC analysis results in an underestimation of the hydrodynamic damping,
leading to predictions of unrealistically large WEC motions and energy capture, especially around
resonance [25] and when driven by an energy maximizing control system [26,27]. This is exemplified
in Figure 2, from the case study in [26], showing the overestimation of the WEC motion predicted by a
linear Cummins equation model, compared to a RANS simulation, when a control system uses the
power take-off (PTO) to drive a heaving point absorber (HPA) into resonance with the input waves,
contrasted against the case where no control is applied and the device is not in resonance.
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Figure 2. Comparison of the displacement-velocity operational space for a heavy point absorber (HPA)
in a JONSWAP sea spectrum, with and without an energy maximizing controller, predicted using a
linear Cummins equation model and a Reynolds averaged Navier–Stokes (RANS) simulation, from the
case study presented in Davidson et al. [26].
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2.1.2. Nonlinear Ocean Waves

Figure 3 shows that linear theory is only valid in deep and intermediate water depths for small
amplitude waves. As the relative water depth decreases and/or the relative wave height increases
(relative with respect to the wave length), then the linear theory breaks down and the wave becomes
nonlinear. Wave breaking, as an extreme case, is a very nonlinear process (see review in Saincher
and Banerjee [18]). The difference in loads calculated including the wave nonlinearity versus the
loads calculated by purely linear models is important for load design and survival and is examined
by Viuff et al. [28] for the case of the Wavestar WEC. Additionally, the wave nonlinearity affects
the hydrodynamic efficiency of a WEC. For example, Ning et al. [29] show that the hydrodynamic
efficiency of a fixed oscillating water column (OWC) attains a maximum value at a critical wave
slope and decreases when the wave nonlinearity becomes either stronger or weaker. Giorgi and
Ringwood [30] examine the effect of wave nonlinearity on the calculation of Froude–Krylov (FK)
forces on an HPA and an oscillating surge converter (OSC) for the different sea states occurring at the
European Marine Energy Centre, contrasting the degree of error with the likelihood of the sea state
occurrence. Further discussion on wave nonlinearity is given in Section 6.3.
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Figure 3. The validity limits of different wave theories dependent on the water depth, the wave height
and the wave period. The region in which linear theory is valid is shown in white (Adapted from [31]).

2.1.3. Time-Varying Wetted Body Surface

The hydrodynamic force on a WEC results from the integral of the fluid pressure over the
wetted-surface area. For a linear model, the wetted surface area is assumed constant, calculated
at the equilibrium position, and the forces linearized around that point, such that a doubling in
wave elevation, body displacement, or velocity, equals a doubling in the wave excitation force,
hydrostatic restoring force or radiation force, respectively. This is illustrated in Figure 4, for the
hydrostatic restoring force on a sphere and a cone, as a function of the heave displacement, showing
the actual nonlinear result due to the time-varying wetted body surface and the linearized version.
The time-varying wetted body surface, and resulting time-varying system parameters, can lead to
phenomena such as parametric resonance [32–36]. In some cases, the geometry of the WEC may also
change with time. Examples of these are flexible structures such as the Bombora, the Anaconda, and the
WECs investigated in [37,38], or WECs with movable control surfaces such as in Diamond et al. [39]
and Tom et al. [40].
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2.2. Hydrodynamic Nonlinearities—Dependences

The influence of the different types of hydrodynamic nonlinearities, detailed in Section 2.1, varies
on a case by case basis, dependent on the following:

2.2.1. Device Dependence

Hydrodynamic nonlinearities are device-dependent. For example, Folley et al. [41] contrast the
hydrodynamics of heaving and surging devices and conclude that the hydrodynamics of the two are
very different and should be considered distinctly. Similarly, Giorgi and Ringwood [42] compare the
relative importance of different hydrodynamic forces for HPAs and OSCs, and show that HPAs are
predominately affected by NLFK forces, whereas, for OSCs, the diffraction and radiation effects are the
most important. For the case of OWCs, the review in [14] identifies that the effects of viscosity appear
to be significantly larger than nonlinearities associated with the waves or time-varying wetted surface,
particularly at resonance. [15] reviews the relevant importance of nonlinear hydrodynamic effects in
OWCs, HPAs, OSCs, and oscillating pitch converters, highlighting differences between each.

2.2.2. Sea State Dependence

The hydrodynamic nonlinearities can depend on the sea states. Sea states with peak frequencies
aligned with the WEC natural frequency will result in large amplitude, resonant WEC motion, enhancing
both viscous and time-varying wetted body nonlinear effects. For example, Yu and Li [25] show large
discrepancies between linear models and RANS simulations, for input waves corresponding to the
resonance frequency of the WEC, but a closer agreement for other frequencies. Additionally, sea states
with larger wave heights are more likely to have waves that fall outside of the linear region in Figure 3.
Wang et al. [43] investigate the effect of the wave nonlinearity and viscosity on the performance of an OWC,
by comparing the linear and nonlinear numerical results and show the changing relative importance
of these nonlinear effects as the wave amplitude increases. Furthermore, the wave nonlinearity could
also depend on the tide, with shallower water depths at low tides increasing the likelihood of waves
falling outside of the linear region in Figure 3.

2.2.3. Control Dependence

The relevance of different nonlinear effects can also depend on the control applied to the device [26,27].
For example, Giorgi and Ringwood [27] examine hydrodynamic nonlinearities in controlled versus
uncontrolled conditions for a spherical HPA. The accuracy and computation time of eight different
partially nonlinear models are compared against RANS simulations, for cases with and without
latching control in regular waves. The results show that when no latching is applied, nonlinearities
were not significant, however, with control, NLFK and viscous drag forces become relevant. Similar
results are shown in Davidson et al. [26] for an HPA in a JONSWAP spectrum, with and without a
controller applying reactive power through the PTO.

2.2.4. Scale Dependence

Hydrodynamic nonlinearities are also scale-dependent. This can be important to consider given
that the assessment hydrodynamic model success is often with respect to physical models at the
laboratory scale. Therefore, it is also important to understand the effects of scaling on the relative
importance of nonlinear hydrodynamic forces, as discussed in Fitzgerald [44]. For example, this point
is examined in Schmitt and Elsaser [45], considering the applicability of Froude scaling from PWT to
full-scale OSCs using both tank tests and RANS simulations. The effect of scaling PWT results for a
moored HPA, from 1:10 to full scale, is investigated in Windt et al. [46], through the use of upscaling.
In the review De Chowdhury et al. [13], specific emphasis is paid on understanding how the modeling
and scaled experiments are likely to be complementary to each other. See Palm et al. [47] also in
Section 3.2.
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2.3. The Navier–Stokes Equations

Accurately modeling the nonlinear wave-structure interaction (WSI), requires a thorough
treatment of the hydrodynamic interaction between the WEC and the fluid, which can be obtained via
an appropriate application of the NSE. The NSE are a set of partial differential equations, describing
the dynamics of fluids, through the conservation of mass and momentum:

∂ ρ(x, t)
∂ t

+∇ · ρ(x, t)U(x, t) = 0, (1)

∂ρ(x, t)U(x, t)
∂t

+ U(x, t) · ∇ρ(x, t)U(x, t) = −∇p(x, t) +∇ · T(x, t) + ρ(x, t)fb(x, t) , (2)

where x denotes the three-dimensional (3D) spatial coordinate, t the time, U the fluid velocity, p the
fluid pressure, ρ the fluid density, T the stress tensor, and fb external forces, such as gravity.

2.3.1. Solving

This first thing to note when solving the NSE is that there are four equations (the momentum
equation consists of a separate equation for each of the three spatial directions), with five unknowns
(pressure, density and the three velocity components). Therefore, an additional equation is required to
enable closure. To achieve this, the conservation of total energy is used to yield “the energy equation”,
which introduces a sixth unknown (temperature), and then an “equation of state” is used to give six
equations with six unknowns (see Ferziger and Peric [48] for more details).

In general, the NSE have no known analytical solution, however, they may be treated numerically
to obtain a solution. To solve the NSE, the continuous partial differential equations are discretized into
a system of linear algebraic equations, which can then be solved by computer. That is, the continuum
is broken up into finite temporal and spatial portions to transform a calculus problem into an algebraic
problem. The problem can be discretized temporally using timesteps. Spatially, a number of different
methods are available for the discretization:

• Mesh: A common approach, which is the main focus of the models reviewed in Section 3, discretizes
the domain into nodes/cells.

• Particles: Discretizes the domain into lagrangian particles, via methods such as smoothed particle
hydrodynamics (SPH) (discussed in Section 4.4).

• Particle distribution field: Discretizes the domain into a field giving a statistical representation of
the particle distribution using methods such as Lattice Boltzman (LB) (discussed in Section 4.5).

The pyramid in Figure 5 depicts the increase in accuracy versus the spatial and temporal
discretizations, represented by the number of model parameters and the simulation time step,
respectively. The higher up the pyramid the more accurate the solution (probably on a log-scale
for WEC simulations) and the smaller the cross-sectional area of the pyramid, at a given height,
the greater the computationally expense (probably on an exponential scale for WEC simulations).

2.3.2. Methods

At the top of the pyramid in Figure 5, the most accurate and computationally expensive way
to solve the NSE is through direct numerical simulation (DNS), where all dynamics generated from
the NSE are simulated on all spatial and time scales. This requires such a high spatial and temporal
resolution, that the enormous number of model parameters and the minuscule simulation time steps
prohibit DNS from being applied to WECs. To overcome this, large-eddy simulation (LES) and RANS
methods model some of the physics rather than directly resolving the smallest scale phenomena.
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Figure 5. Schematic comparison of the accuracy versus computational requirements for solving the
NSE. The more parameters and the smaller the timestep, thus the smaller the cross-sectional area of
the pyramid at a given height, the greater the computational requirements. Here the vertical scale is
likely logarithmic, the horizontal scales exponential and the cut-off positions between methods are
not exact (Image inspired from [49,50]). The white region, “Efficient nonlinear hydrodynamic models,”
represents the focus of the scoping study. (Insert: Example simulation resolution from the different
methods, for airflow past a dimpled sphere, adapted from [51]).

For LES, the large scale turbulent structures are directly resolved and the turbulence on the
sub-grid scale is modeled, which is still very computationally expensive, and has therefore rarely been
applied to WEC applications (examples of LES applied to WECs can be seen in [52–54]). The RANS
method does not attempt to directly resolve any of the turbulent structures, thus larger mesh cells and
time steps are possible, which significantly reduces the computational requirements of this method
compared to DNS and LES. RANS modeling is, therefore, becoming more computationally accessible
(in line with the increased availability of low cost— high-performance computers) and is growing
in popularity, with a recent review collating over 200 publications that apply RANS modeling for
WECs [8]. However, as noted in Section 1.1, RANS is still too computationally expensive to simulate
multiple WEC design iterations across multiple sea states.

At the bottom of the pyramid are linear hydrodynamic models based on the Cummins equation [55].
For these linear Cummins models, the simulation time step can be equal to the sampling of a sea
state (approx. 30 mins) using frequency domain analysis [7] and the number of model parameters
on the order of the number of frequency components considered. The white region on the pyramid,
between RANS and the linear Cummins models, is the focus of Section 3, where an efficient nonlinear
hydrodynamic modeling methodology, with sufficiently high accuracy and low computational cost, is
sought by simplifying the Navier–Stokes solutions.

2.3.3. A Note on Turbulence

The Insert in Figure 5 shows an example of the airflow past a dimpled sphere from [51]. This example
was taken from another field since such a figure does not exist for WECs, due to the challenging
nature of turbulence modeling for WECs: (1) It is a multiphase problem, consisting of both air and
water phases, with a discontinuity of physics at the free surface interface. The difficulties in applying
turbulence models to two-phase fluids are recently addressed in [56,57]. (2) It is a transient problem,
where both the WEC body and the surrounding flow field are constantly oscillating. This raises
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questions of whether the boundary layer has time to fully develop, and also means that the yPlus value
is constantly changing and frequently equals zero. Conversely, the simulations depicted from [51],
the input velocity is constant and the body is stationary relative to the surrounding flow-field.

3. Simplifying the Navier–Stokes Solutions

This section reviews the methods to simplify the NSE. Section 3.1 details the various simplifications
which can be applied to the NSE and then Sections 3.2–3.7 review the literature which applies the
corresponding methods, derived from these simplifications, to WEC simulations.

3.1. Simplifications

Simplifying the NSE solutions can be achieved on fronts: (1) simplifying the equations,
and (2) simplifying the boundary conditions and computational domain.

3.1.1. Simplifying the Equations

There are three main simplifications that can be applied to the equations, as depicted in Figure 6
and described below:

(a) Incompressibility: Considering the fluid to be incompressible is a very good assumption for
water, resulting in very little loss in accuracy. This provides a major simplification, as the density
becomes a known constant, allowing the NSE to be solved as a system of four equations with
four unknowns, without the need of including the additional energy equation and equation of
state for closure (as discussed in Section 2.3.1). However, one case in wave energy where this
does not hold is for OWCs when considering the dynamics of the air chamber. To accurately
model the entire OWC system, the compressibility of air is important, requiring thermodynamic
considerations, as described in the reviews [58,59] which give a good overview of the modeling
of OWC systems. Falco and Henriques [60] explicitly review “the spring-like effect” of the air
compressibility in OWC chambers and Lopez et al. [61] and Elhanafi et al. [62] show that neglecting
air compressibility may lead to significant errors. However, as the scope of this review pertains
to the hydrodynamics of WECs, rather than the thermodynamics, all methods herein consider the
assumption of incompressibility.

(b) Inviscid: Setting the viscosity to zero eliminates the stress tensor from the momentum equation,
(Equation (2)), yielding the Euler equations, which are reviewed in Section 3.2.

(c) Irrotational: An irrotational flow implies that the velocity can be described as the gradient of a
potential, which allows the continuity equation for the velocity to be transformed into Laplace’s
equation for the potential. This is termed potential flow (PF), which greatly simplifies the solution
to the NSE, as the potential is a scalar value that can be obtained from a single equation, compared
to solving for the three components of the velocity vector. PF based methods are reviewed in
Sections 3.3–3.6.

NSE 
Compressible fluid

NSE 
Incompressible fluid Euler Equations 

Inviscid Incompressible fluid
Laplace's Equation
Velocity potential

Constant density No viscosity Irrotational

Computational cost

Accuracy+

+ -

-

Figure 6. Hierarchy of simplifying assumptions applied to the NSE, yielding lower accuracy and more
computationally efficient equations for hydrodynamic analysis (adapted from [63]).
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3.1.2. Simplifying the Boundary Conditions and Computational Domain

After gaining as much computational savings as possible by simplifying the NSE to Laplace’s
equation and PF, further computational savings can be made by simplifying the boundary conditions
and computational domain.

• Considering the entire 3D computational domain, whose boundaries change position in time
in-line with the evolution of the free surface and WEC body surface, fully nonlinear PF (FNPF) is
the most accurate method, but also requires the most computation of the PF methods. FNPF is
discussed in Section 3.3.

• Assuming shallow-water conditions, the vertical component of the velocity can be neglected,
which reduces the computational domain to 2D, and the various methods applying the
shallow-water equations are reviewed in Section 3.4.

• Assuming the scattered (diffracted and radiated) waves are small, the free surface boundary
conditions can be linearized on the incident wave elevation, using the weak scatterer method
detailed in Section 3.5.1.

• Employing a Taylor series expansion of the free surface and body boundary conditions about
their mean positions enables the computational domain to remain static and is the basis of weakly
nonlinear PF (WNPF) reviewed in Section 3.5.2.

• Considering the free surface boundary at its means position, but applying the WEC body
boundary conditions on the instantaneous wetted surface at each time-step, is the partially
nonlinear PF presented in Section 3.6.

• At the extreme end of the simplifications to the NSE, is LPF, which linearizes the free surface and
WEC body boundary conditions around their mean positions.

3.2. Euler Equations

The Euler equations simplify the NSE by considering the fluid to be inviscid. Although the inviscid
fluid simplification does not make the Euler equations much easier to solve, it reduces the simulation
time since the boundary layer effects do not need to be resolved. The fine mesh sizing, required in
the boundary layer of RANS simulations, not only increases the total number of cells but also forces
the time step of the simulation to be very small in order to satisfy the Courant–Friedrichs–Lewy
condition. The meshing approach for the Euler equations is similar to the RANS equations (except
for the treatment of the boundary layer), typically employing the finite volume method (FVM) to
solve the equations and considering one-fluid, with two phases (air and water), inside the domain.
The advantages of this approach include the ability to simulate wave breaking, green water on the
WEC, etc, as depicted in Figure 7.

Air

WEC

Water

Figure 7. Schematic of the finite volume discretization and the one fluid/two-phase (air and water)
modeling for the Euler equations.
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The Euler equations are only employed in a small number of WEC simulations and analysis
studies, which are listed in Table 1. Hu et al. [64,65] use the Euler equations to simulate two very
nonlinear WEC scenarios: extreme waves and slamming. The development of the AMAZON-3D
NWT for the study of wave loading on WECs is described in [64], where some preliminary results
of the Manchester Bobber WEC in regular waves and the generation of extreme waves without
the WEC in the NWT are presented. In [65], the water impact on a WEC in free-fall motion is
simulated in AMAZON-3D, to provide insight into the expected pressure loads on the WEC hull from
slamming events. Westphalen et al. [66] also perform simulations of the Manchester Bobber WEC using
AMAZON-3D, as a part of a study that compares four different CFD modelling approaches for the
simulation of WEC survivability design scenarios. Two different RANS solvers (STAR-CCM+ and
ANSYS CFX), an SPH solver and AMAZON-3D are applied to a series of benchmark test cases for
non-linear WSI. All of the methods predicted the WSI well and showed good agreement with the
experimental results. Unfortunately, computation comparison between the different methods could
not be provided since they are run on very different computers with different clock speeds and number
of processors, etc.

Eskilsson et al. [67] applied the Euler equations, in addition to RANS equations, using the
open-source CFD software OpenFOAM, to model overtopping in the Wave Dragon WEC. In general,
very little difference is observed in the results, leading the authors to conclude that employing the
inviscid simulations would be favored due to the faster simulation times. The total number of
mesh cells is listed as 14.5 M cells with the boundary layer and 13.3 M without, and although no
direct comparison of run-times is given, the authors state that the main speed-up comes from the
larger time-steps allowed on bigger cell sizes. Palm et al. [34,47] also employ both Euler and RANS
equations in OpenFOAM for WEC simulation. In [34], the CFD simulations are used to investigate
parametric resonance in an HPA WEC, as this is a nonlinear effect unable to be captured by linear
hydrodynamic models. Both Euler and RANS equations are applied, in order to investigate the effect
of viscosity, with the same mesh used in both simulations for consistency (hence the Euler equations
aren’t employed for computational speed-up). From the results, it is concluded that viscous effects
influence the roll mode of motion, due to the formation of anti-symmetric von Karman vortices around
the WEC, but the effects are negligible on the scale of the first order WEC responses in surge, heave,
and pitch. In [47], the nonlinear forces on an HPA in resonance are analyzed at both full scale (1:1)
and at model scale (1:16), to assess scaling effects. RANS, Euler and linear hydrodynamic models
are used, and the Euler simulations are shown to be scale-independent and are therefore useful to
quantify the scale-dependent part of the nonlinear effects. Again, in this study, the same mesh is used
for the RANS and Euler equations for consistency as the Euler equations aren’t being employed for
computational speed-up.

Table 1. Review of publications utilizing the Euler equations for wave energy converter
(WEC) simulation.

Ref. Software WEC Type Analysis

[64] AMAZON-3D Manchester Bobber Extreme wave loadings

[65] AMAZON-3D Manchester Bobber Slamming

[66] AMAZON-3D Manchester Bobber Survivability design scenarios

[67] OpenFOAM Wave-Dragon Over-topping

[34] OpenFOAM HPA Investigation of parametric resonance

[47] OpenFOAM HPA Investigation of scale effects
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3.3. Fully Nonlinear Potential Flow

In addition to the assumption of inviscid fluid, FNPF models further simplify the NSE by assuming
the flow to be irrotational, allowing the velocity vector field to be represented by the gradient of a
scalar potential field and solved via Laplace’s equation. While LPF methods are also based on solving
Laplace’s equation for the velocity potential, FNPF models permit large-amplitude displacements and
apply the fully nonlinear free-surface and body boundary conditions on the instantaneous boundaries
at each time step, rather than considering the free-surface and wetted-body surfaces at their equilibrium
positions. The fluid domain evolves during the simulation, requiring the FNPF solver to track the
position of the free-surface and the exact wetted surface of any bodies, thereby significantly increasing
the computational overhead compared to LPF models. However, as discussed in Fitzgerald’s overview
of FNPF modeling for WECs [44], FNPF is less computationally expensive than RANS and can model
wave propagation with higher accuracy and significantly less numerical dissipation.

The most common method, for capturing the time-varying nonlinear free surface interface, is a
mixed Eulerian–Lagrangian (MEL) scheme depicted in Figure 8. Originally proposed in the work
of Longuet–Higgins and Cokelet [68], who pioneered the development of nonlinear potential flow
(NLPF) NWTs more than 40 years ago, the MEL scheme solves the Laplace equation in a Eulerian
coordinate system, while applying a Langrangian approach to handle the dynamic free surface
interface, by advecting the mesh points on the boundary.

(a) (b)

Figure 8. Schematic of the mixed Eulerian–Lagrangian (MEL) scheme. (a) Equilibrium position with
no waves and (b) dynamic motion of the mesh to capture time-varying free surface.

Also proposed by Longuet-Higgins and Cokelet [68], is the numerical time-stepping scheme
utilized to solve FNPF models, which in addition to solving the governing matrix equation at each
time-step, also requires that the hydrodynamic influence matrices are first recalculated for the new
time-step in response to the evolving computational domain. Therefore, the development of very
efficient numerical methods, for obtaining the solution at each time step, has been essential to permit
the usage of FNPF, in marine engineering applications, with reasonable run times. The numerical
methods used to solve the Laplace equation can be categorized into two groups:

• Projection methods: such as the boundary element method (BEM), virtual source method or
spectral method, that involve projecting the problem onto some portion of the fluid boundary
and thereby reducing the computational dimension of the problem by one.

• Field solvers: such as the finite difference method (FDM), finite element method (FEM) and
harmonic polynomial cell (HPC) method, that discretize the whole computational domain.

However, prior to the mature development of these methods, the first early WEC application of
FNPF [69,70], solved the FNPF using Cauchy’s integral equation, which is only valid in 2D cases.

Another categorization of the solution methods relates to the order of the discretization, either
high- or low-order. High-order discretization methods can significantly reduce computational effort
compared to the conventional low-order methods. Engsig-Karup et al. [71] discuss this, explaining
that theoretically, it is impossible to be efficient if the order of accuracy does not at least match the
dimension of the problem. For example, it is impossible for second-order methods to be efficient in 3D
NWTs. The development of efficient FNPF NWTs should, therefore, focus on higher-order schemes,
which have indeed been proposed for BEMs (HOBEM), high-order spectral (HOS) methods, FDMs,
FEMs, and the HPC method, as reviewed in the following sections and Table 2.
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Table 2. Review of publications utilizing fully nonlinear potential flow (FNPF) for WEC simulation.

Ref. Method WEC Type Analysis

[69] Cauchy’s Eqn Salter’s Duck (2D) Capsizing in extreme waves

[70] Cauchy’s Eqn Submerged wave lens Focusing of wave energy

[72] BEM OWC (2D) Geometry analysis

[73] BEM Land-based OWC (2D) Validation against RANS and experiments

[74] HOBEM Bristol Cylinder (2D) Proof of modeling concept

[75] BEM Floating OWC (2D) Using the acceleration potential method

[76] BEM Floating OWC (2D) Including viscosity to NLPF model

[77] BEM Floating OWC (2D) Evaluating sharp versus round corner geometry

[29] HOBEM Fixed OWC (2D) Investigating hydrodynamic performance

[78] HOBEM Submerged cylinder (2D) Proof of modeling concept

[79] BEM Rolling-cams (2D) Including viscosity to NLPF model

[80] HOBEM Bristol Cylinder (2D) Validation against experiments

[81] BEM Fixed OWC Investigation of stepped-bottom OWC

[82] BEM HPA (Cylinder) Effect of wave steepness

[43] HOBEM Fixed OWC (2D) Including viscosity to NLPF model

[83] BEM OSC (2D) Hydrodynamic performance for large motion

[84] HOBEM OSC Performance in waves and currents

[85,86] BEM HPA (Cylinder) Latching control/Wave-body-PTO interaction

3.3.1. Boundary Element Method

The BEM solves Laplace’s equation via a boundary integral equation, derived through the
application of Green’s 2nd identity, which projects the problem from the interior volume of the fluid
domain onto the boundaries. Therefore, the BEM reduces the dimension of the problem, which is a
strong advantage of this method. In addition, it enables the BEM great flexibility in handling complex
geometries, such as variable bathymetries and arbitrarily shaped bodies in the domain. As shown in
Table 2, the majority of NLPF WEC simulations have been performed using BEM and HOBEM.

The disadvantage of the BEM is that numerically, at each time step, it requires the inversion of
full matrices, which is computationally costly compared to sparse matrices. Directly solving such
systems of linear equations, using Gaussian elimination or LU-factorization, would require O(N3)

memory and CPU time, where N is the number of nodes on the boundary. Whereas employing
an iterative solver, such as the Gauss–Seidel or the Krylov subspace Generalized Minimal Residual
method, can reduce these requirements to O(N2), which is still too computationally inefficient for
realistically sized grids in 3D. Therefore, to overcome this, some approaches seek robust methods
to reduce the number of required unknowns, N, such as Feng et al. [87], who investigate a Rankine
source computation and show that by using half as many source points as other reported methods,
their computation time is reduced by a quarter. Alternatively, the Fast Multipole Method (FMM)
(see Yokota [88] for a review of this method), can provide great improvements with computational
requirements approaching O(N). Fochesato and Dias [89] implemented the FMM in a 3D NWT,
revealing approximately O(NlogN) complexity, for the example case of overturning of a solitary wave
over a sloping bottom, with N = 6022. This performance was verified in Sung and Grilli [90] for ship
hydrodynamics problems, where an increasing number of unknowns were used and the CPU time was
observed to grow like O(N1.3). Harris et al. [91] also found O(N1.3), for the case of waves interacting
with surface piercing bodies, when demonstrating the favorable scaling of the FMM implemented
on parallel CPU clusters using ExaFMM (one of the fastest FMM codes available today and has been
tested for billions of DoF).
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Other approaches seek to reduce the number of elements, while obtaining high accuracy, via
higher-order elements. The mid-interval interpolation approach was employed by Grilli et al. [92]
to develop a 3D NWT, which was later extended by Guerber et al. [74] to include a submerged body.
However, in this work, the elements required a structured mesh, hindering its application to 3D
surface-piercing bodies of complex geometry, such as WECs. To overcome this, Harris et al. [91] utilize
unstructured grids, that are more flexible in handling surface-piercing complex geometries, but employ
lower accuracy linear elements. More recently, Harris et al. [93] extend the unstructured grid approach,
while also using high-order elements, by using B-splines, inspired by the work using T-splines in
Maestre et al. [94]. Abbasnia and Ghiasi [95] examine the stability and accuracy of Non-Uniform
Rational B-Splines (NURBS) to model the free surface, showing a reduction in computational nodes
and simulation time, as well as advantages in capturing steep nonlinear waves with sharp free surface
mutations. Bai and Eatock Taylor [96] and Zhou et al. [97,98] apply HOBEM to perform simulations of
fully nonlinear wave radiation by vertical cylinders, which are similar to the case of PA WECs.

3.3.2. Spectral Methods

Spectral methods involve projecting the governing equations onto basis functions to discretize
the computational space using Fourier modes. The harmonic ocean surface can generally be well
described via Fourier analysis, therefore spectral methods have received a lot of attention for FNPF
wave propagation modeling, first demonstrated by Fenton and Rienecker [99]. Such techniques involve
computationally quick Fast Fourier Transform resolution, permitting accurate simulations of wave
fields at low cost, but are in general less flexible in treating WSI.

A well-developed example of this method is the High-Order Spectral (HOS)-Ocean software,
extensively validated in the LHEEA Lab at ECN, and available freely open-source Ducrozet et al. [100].
The spectral methods are used in combination with either second-order perturbation series or
fully-nonlinear HOS method, which use a modal expansion in the vertical direction to collapse
the numerical solution to the 2D horizontal plane, shown in Bonnefoy et al. [101]. The HOS method
was initially limited to flat bottomed unbounded domains, modeled with periodic conditions applied
on the sides of the numerical domain, therefore allowing the reproduction of open-sea evolutions
from an initialized sea-state. However, recent developments have extended the method application
range, allowing replication of PWTs with wave generation, absorption, and reflection from side waves,
HOS-NWT [102], and also for domains with variable bathymetry [103].

One important point to mention in reviewing spectral methods, is the lack of WSI cases, with all
of the literature reviewed considering wave only cases. For the application of WEC modeling, the use
of spectral methods, which have demonstrated to be a fast method for FNPF wave propagation,
might best be achieved through domain decomposition methods (described in Section 4). Indeed,
this approach is suggested in Ducrozet et al. [100], as detailed in Section 4.3.1.

3.3.3. Virtual Source Method

The VSM, recently proposed in Langfield et al. [104], is also based upon an integral equation
approach, derived from the application of Green’s identity with the Laplace equation. However,
unlike the BEM, which solves for the velocity potential at boundary nodes located on the free
surface, the VSM solves for the velocity potential on a static virtual boundary located above the
fluid. This time-independent domain of integration is advantageous, and also the problem of singular
integrals, which can occur on the free surface, is removed. In addition, the VSM draws on the strengths
of the spectral methods, spatially discretizing the problem using spectral components of the solution
along the virtual boundary. Al-Teemi et al. [105] compare the VSM and a standard BEM for modeling
a nonlinear standing wave in a 2D NWT, and by doubling the number of boundary elements and
resolution points, they show the computational time of the BEM increases by about 8 (O(N3)) but only
by a factor of about 2.6 in the VSM O(N1.35). However, due to its relative infancy, its ability to handle
floating bodies must be demonstrated before it can be assessed for WEC simulation.
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3.3.4. Finite Element Method

The FEM discretizes the fluid domain into elements and then uses interpolation functions within
each element. The use of FEM for fully nonlinear water waves was pioneered by Wu and Taylor [106],
and a review of FEM application in nonlinear wave-structure interaction is given in Wang and Wu [107].
FEM and BEM were compared in Wu and Taylor [108], showing that the FEM was more efficient in
both memory and CPU time. Although the FEM requires a greater number of nodes than the BEM
as the FEM discretizes the whole fluid domain and not just the boundaries like the BEM, the global
coefficient matrix in the FEM is symmetric and sparse and therefore requires less storage and CPU time
to solve compared to the dense matrices in the BEM. A comparison of the computational requirements
of FEM versus BEM is also given in Cai et al. [109] showing that FEM is O(N).

The FEM offers significant geometric flexibility and is well suited for handling floating bodies
of arbitrary shape. As a prime example, Hosters et al. [110] have recently modeled FSI with flexible
structure and deformable bodies, by coupling FEM with NURBS. The use of NURBS to FEM is
discussed in [111], who describe it as allowing a seamless integration of computer-aided drawing
(CAD) boundary representation of the domain and the FEM.

However, FNPF applications have typically been limited to second (low) order FEM schemes
based on a MEL approach for tracking the free surface (see references in Engsig-Karup et al. [112]),
which increases the computational burden due to mesh updating and can lead to stability problems
for deformed meshes [113]. To overcome this expensive re-meshing problem, an efficient Quasi
Arbitrary Lagrangian–Eulerian FEM (QALE-FEM) is developed in Ma and Yan [114]. In the QALE-FEM,
the complex mesh is generated only once, before the simulation starts, and then conforms to the moving
free surface and floating bodies using a spring analogy method. QALE-FEM has been successfully
applied to modeling freak waves [115], and during extensive numerical investigations in Ma and
Yan [116], where various cases for 3D floating bodies with motions of up to six DoFs are simulated,
it is shown that the QALE-FEM can be more than 6 times faster than the conventional FEM.

3.3.5. Spectral Element Method

To overcome the limitation of FEMs to low order schemes, higher-order spectral element methods
(SEMs) seek to combine the high-order accuracy of spectral methods with the geometric flexibility of
FEMs. This concept dates back to the work of Patera [117]. Combining SEMs with hp refinement, gives
the spectral/hp method [118]. Eskilsson et al. [119] investigate spectral/hp method for Boussinesq type
equations (see Section 3.4.1) and describe that the computational domain is divided into elements of
size h, while the solution within an element is approximated by a pth order polynomial. Convergence to
the desired solution is achieved either by increasing the number of elements (h-type refinement) or the
order of the polynomial (p-type refinement). Engineering accuracy can be achieved from relatively few
spectral/hp DoF, typically only four to six DoF per wavelength, resulting in smaller matrices to store
and solve, making SEMs “memory-minimizing” as well as computationally efficient for large-scale
problems. A recent overview of spectral/hp is given in [120] focusing on the use of the spectral/hp
element method in transitional flows and ocean engineering.

Developing SEMs for WSI has been the focus of recent work by Engsig-Karup et al. [71,112,121–124].
The development of the method for fully nonlinear waves is described in [112], and the consideration
of WSI in [71,124]. Floating surface piercing bodies, as well as forced motion of a submerged cylinder,
are investigated in [121], which demonstrates the suitability of this method for WEC applications.
Focused wave impact on FSPO is simulated in [122] as part of a blind-comparison test [125] against
experimental results. The extension of the solver with a geometric p-multigrid method is presented
in [123], which efficiently overcomes the computational bottleneck in the SEM procedure. A case
study of WSI with a surface piercing bottom-mounted cylinder is presented and reports scalable O(N)

complexity in work effort. The significance of the multigrid method in enabling computationally
competitive run times by leveraging the capabilities of the next generation of computing hardware is
discussed in Section 6.5.
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3.3.6. Finite Differences Method

The FDM discretizes the entire fluid domain and employs finite differences schemes to solve
the spatial derivatives. Higher-order solutions can easily be obtained, as discussed in Bingham and
Zhang [126], where choosing r nearby points, allows order (r− 1) finite-difference schemes for the
first and second spatial derivatives. Like the FEM, the global coefficient matrix is sparse, in this case
containing approximately r2N nonzero elements, which can be solved with O(N) operations.

Considering the oscillating free-surface, the time-varying physical domain is commonly mapped
to a constant computational domain, using the σ transformation, which normalizes the vertical
co-ordinate between the instantaneous free surface and the seafloor. However, the σ transformation
prohibits the use of arbitrarily shaped floating bodies, so it may not be useful for the case of WECs.
Indeed, the main disadvantage of the FDM is difficulty in handling complex geometries and fitting
boundaries when compared to the FEM or the BEM.

Bingham and Zhang [126] consider the relative accuracy and efficiency of low- and high-order
FDMs for nonlinear water waves and develop an extension of the discretization method employed
by Li and Fleming [127], which allows arbitrary order finite difference schemes and a non-uniform
grid spacing to permit clustering of grid points where desired. They present a 2D test case and show
that for iterative solution methods, linear scaling of the solution (i.e., O(N)) can be achieved, with a
reduction of the residual by seven orders of magnitude being achieved in ≈10 iterations. Stability
issues in [126,127] are solved in Engsig-Karup et al. [128] by placing a set of ’ghost’ computational
points outside of the fluid domain for calculating derivatives at the boundary. Ref. [128] also extend
the method to 3D, using a multigrid preconditioner, with the goal of a computational tool for large
scale simulation of nonlinear wave-wave, wave-bottom and WSI for coastal and ocean engineering.
The advantages of the multigrid method, with respect to memory usage, are demonstrated, where all
matrix operations are performed explicitly using only local operations. The algorithms are also well
suited to parallelization and the solution is found to be robust for general nonlinear wave problems.
This method has been developed into the software OceanWave3D under the lead of Engsig-Karup.

Considering WSI using OceanWave3D, is addressed in Ducrozet et al. [129], where OceanWave3D
is extended with a nonlinear decomposition of the solution into incident and scattered fields,
as demonstrated in Ferrant [130], where the incident field is prescribed and only the scattered field needs
to be solved (see Section 3.5.1). A validation study is detailed, considering the nonlinear wave diffraction
of a vertical bottom-mounted cylinder in long regular waves, where comparisons with experiments
and an FNPF-BEM model (XWAVE) highlight the accuracy and robustness of the OceanWave3D
model. The nonlinear decomposition is further refined and detailed in Ducrozet et al. [131], where the
advantages in terms of robustness, accuracy, and efficiency are also demonstrated by comparison with
the more common strategy of solving the incident and scattered fields together.

3.3.7. Hybrid Spectral Method

A comparison between HOS-Ocean and OceanWave3D, in terms of accuracy and efficiency,
is presented in Ducrozet et al. [132], revealing that the RAM usage is proportional to N for both
solvers, while the computational effort is proportional to N for OceanWave3D and N log(N) for
HOS-Ocean. However, N is smaller for the HOS method, which is discretized on the surface only,
compared to OceanWave3D which discretizes the vertical direction. Also, the results are strongly
dependent on the choice of parameters such as the order of the finite difference scheme, the GMRES
tolerance for OceanWave3D, and the order of nonlinearity M for the HOS. For the considered case
of wave propagation in a flat bottomed, rectangular domain, the results find that OceanWave3D
requires approximately an order of magnitude larger computational effort than the HOS-Ocean
(although OceanWave3D was not parallelized at this point of comparison, see Section 6.5). However,
the pseudo-spectral formalism of the HOS model restricts the model to a rectangular domain (in the
horizontal plane) and imposes limits on the total variation of the water depth, while OceanWave3D is
more flexible with regard to the geometry and bathymetry.
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In the wake of this comparison, an additional approach has been proposed to combine some of the
efficiency of the spectral method, with the geometric flexibility of the FDM, by using a spectral method
only in the vertical dimension and FDM in the horizontal. Yates and Benoit [133] compare an approach,
combining the FDM in the horizontal with spectral in the vertical, against the full FDM approach,
and reveal the hybrid-spectral model approach shows enhanced accuracy and efficiency compared
to the original FDM model. Similarly, Christiansen et al. [134] present a new hybrid-spectral model
replacing the FDMs used in the OceanWave3D model with a Fourier collocation method horizontally
and a modal Chebyshev Tau method vertically. It is observed that the cost associated with the FDM is
around double the cost of the presented hybrid-spectral method.

3.3.8. Harmonic Polynomial Cell Method

Motivated by FNPF WSI analysis in marine hydrodynamics, Shao and Faltinsen [135] proposed
a higher-order HPC method in 2D, and then extend it to 3D in [136]. The computational domain is
discretized by overlapping quadrilateral cells, and within each cell, the velocity potential is represented
by the linear superposition of a set of harmonic polynomials. The advantage of using harmonic
polynomials is that they satisfy the Laplace equation. The basic idea of using harmonic polynomials to
represent the velocity potential in fluid dynamics was first introduced by Euler about 300 years ago.
Similar to the other field methods, the HPC method operates with a sparse matrix which can be solved
by any efficient matrix solver, and the presented procedure has approximately 4th order accuracy.

Shao and Faltinsen [135] demonstrated the accuracy and efficiency of the HPC method by
comparing with a constant BEM, a fast multipole accelerated constant BEM, a second-order accurate
FVM and a second-order accurate cell method based on Lagrange polynomials. With the number of
unknowns which is typical in marine hydrodynamics and considering the CPU time to achieve the
same accuracy, it was shown that the HPC method was clearly the fastest among the five methods in
the comparative study. Shao and Faltinsen [137] further developed this to include current effects and
considered the fully-nonlinear wave-current-body interaction for single and multiple bottom-mounted
cylinders in regular waves. Here they also implemented a matched/multi-block grid, to allow more
complicated geometries. Hanssen et al. [138] then demonstrate an Immersed Boundary Method,
in conjunction with the HPC, for an easy simulation involving moving bodies with complex geometries.
The thesis by Hanssen [139], utilizes the HPC method for nonlinear WSI, involving large body motions
and steep waves, beyond the capability of linear and weakly nonlinear methods.

Recently, an improved HPC method has been reported in Zhu et al. [140], considering a fixed mesh
with the free surface immersed, which decreases the CPU time by 20–40% for the cases considered.
A detailed and systematic analysis of the local and global properties of the HPC method is performed
in Ma et al. [141], showing that the efficiency of the HPC method is greatly increased when using
cubic cells that remain fixed throughout the simulation. This led Robaux and Benoit [142] to further
investigate the Immersed Boundary Method, following [138], to work with fixed cubic grids.

3.3.9. FNPF-Summary

Many methods are currently in development, with no clear winner among them for WEC
simulation. Comparing the efficiency is not straightforward, as, for example, some methods that
present O(N) speed have a larger value of N than methods with O(NlogN) speed and smaller value
of N. Additionally, some methods offer better geometrical flexibility, essential for modeling arbitrarily
shaped WECs, bathymetries, et cetera, while other methods offer more efficient computation but with
restrictions on the geometry. Monteserin et al. [121] discuss that the design of efficient and flexible
methods to handle both the nonlinear wave propagation and wave-body interactions is non-trivial as
FNPF NWTs have traditionally been designed to focus on one or the other. Only very recently has
progress been made on combining the strengths of the different methods, and the inclusion of floating
bodies with some of the solvers. The findings from this review would expect continued development
along these lines in the coming years.
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3.4. Shallow-Water Equations

Shallow-water equations are approximations to the FNPF case, which reduce or eliminate the
vertical dimension, presenting a computationally efficient approach for modeling nonlinear wave
propagation and transformation in near-shore regions. The shallow-water equations are derived by
depth-integrating the NSEs, which allows the vertical velocity to be removed from the equations and
the vertical pressure gradients to be considered hydrostatic. Three types of shallow-water approaches
have recently been utilized for WEC analysis, Boussinesq, non-hydrostatic flow, and congested shallow
water models (collated in Table 3).

Table 3. Review of publications utilizing depth-averaged equations for WEC simulation.

Ref. Method WEC Type Analysis

[143] Boussinesq (SEM) HPA Comparison against linear and RANS models

[144–146] Boussinesq (SEM) HPA (2D) Verification and validation of model

[147,148] Congested shallow water HPA (2D) Verification and validation of model

[149,150] Non-hydrostatic flow Submerged PA Simulate interactions between nonlinear wave
field and WEC over coastal scale regions

[151] Non-hydrostatic flow Submerged PA Parametric instability

[152] Non-hydrostatic flow Submerged PA Geotechnical stability of the moorings

3.4.1. Boussinesq Equations

Boussinesq equations are depth-averaged, spatially formulated only in the horizontal dimensions,
by expanding the velocity potential as a polynomial in the vertical dimension. Madsen and Schaffer [153]
and Brocchini [154] provide detailed reviews of Boussinesq-type modeling. Boussinesq models are a
commonly used tool for simulating wave propagation in coastal regions, providing good accuracy
in shallow-water, including both non-linearity and frequency dispersion, and low computational
overhead, as the computational domain is only one cell thick and the moving free surface is expressed
as a boundary condition rather than requiring calculation of time-varying mesh nodes. However,
Boussinesq-type models have seldom been utilized for floating WSI applications.

Eskilsson et al. [143] present an initial study of using Boussinesq-type equations for simulating an
HPA in nonlinear waves, compared against both linear Cummins and RANS models. The Boussinesq
model gives a smaller response than the linear model, but greater than the RANS (which Eskilsson et al.
believe can be reduced by enhancing the Boussinesq expansion used below the hull). The wave-body
coupling is achieved using the unified Boussinesq approach of Jiang and Henn [155], whereby
the problem is decomposed into an outer “free-surface” domain and an inner “body” domain,
as illustrated in Figure 9. Both domains are modeled using the Boussinesq equations (thus ‘unified’)
and the inner-domain solved considering the instantaneous draft of the body. Jiang and Henn
solved the unified Boussinesq equations using staggered finite differences, however, the model in
Eskilsson et al., formulated in one spatial dimension, uses an SEM [156] for high-order accurate
numerical discretization in space. A comparison of the SEM, FEM, and FDM for solving Boussinesq
type equations is given in Eskilsson and Sherwin [157], showing computational advantages to the
SEM. The continued development and analysis of the SEM Boussinesq model in [143], is elaborated
in Bosi et al. [144–146], who class it as a “medium fidelity model” with an adequate precision for
weakly nonlinear and dispersive waves, able to account for the nonlinear interaction with fixed and
floating bodies.

Applying Boussinesq models, Mohapatra and Guedes [158,159] also decompose the computational
domain to “inner” and “outer” domains to handle the region under the hull and the free surface
regions, respectively. In [158] the Boussinesq models are used to assess floating barge type marine
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renewable energy devices in coastal regions and in [159] to investigate the wave diffraction from a
floating fixed vertical cylinder, compared against RANS and experimental data.

Overall, while efficiency is gained in the Boussinesq equation approach, by eliminating the vertical
dimension to one cell, and this method has been shown to work effectively for floating bodies, it is
unclear if this could be applicable to submerged bodies, with the fluid domain both above and below
the body. However, the non-hydrostatic approach in the next section uses a small number of vertical
layers and has thus been applied to the case of submerged WECs.

Outer
domain

Inner
domain

Outer
domain

Outer domain - Pressure
Outer domain - Velocity

Inner domain - Pressure
Inner domain - Velocity FSE=F(x,t)

Figure 9. Schematic of unified Boussinesq approach in Jiang and Henn [155], showing the outer and
inner domains, the single cell in the vertical dimension discretization and the staggered finite difference
method (FDM), where velocity and pressure control volumes do not coincide.

3.4.2. Non-Hydrostatic Flow

The non-hydrostatic flow approach was developed two decades ago [160,161], to extend the
application range of the shallow-water equations for cases where the influence of the non-hydrostatic
pressure component may be significant, such as steep seafloor or free surface gradients. Non-hydrostatic
models supplement the shallow-water equations with the addition of a vertical momentum equation
and non-hydrostatic pressure in horizontal momentum equations. Thus, the extended application
range comes at the cost of an increase in the spatial discretization in the vertical direction and a
time-consuming Poisson-equation solution for the non-hydrostatic pressure.

For the WEC case, this approach has recently been adopted in [149–152] to simulate a submerged
WEC, using the open-source tool, SWASH [162]. The primary focus in Rijnsdorp et al. [149,150] is the
development of a new tool to simulate the non-linear evolution of waves and their interactions with
WECs at the scale of a realistic coastal region ≈O(1× 1)) km. The model was able to satisfactorily
capture the wave elevation, wave-induced body motions, and mooring line forces in both linear and
nonlinear wave conditions, with a relatively coarse vertical discretization of only 3 to 7 vertical layers,
considering a submerged HPA representing a simplified CETO WEC. However, this work was only a
first step in the development of a non-hydrostatic model for a WEC simulation, with the numerical
approach imposing strict constraints on the horizontal motions and the rotations of the body in the
computational mesh. Tom et al. [152] use this model in a fluid-structure-soil interaction framework to
investigate the geotechnical stability of the mooring foundation. More DoFs are then considered in
Rijnsdorp et al. [151], with the goal of investigating the parametric excitation and dynamic instabilities
of a similar submerged WEC, with three mooring-PTO tethers to the seafloor.

3.4.3. Congested Shallow Water

Wahl [148] and Godlewski et al. [147] derive a shallow water model, for applications with a
structure at the free surface, by including a supplementary congestion constraint to the equations.
To account for freely floating objects, a coupling is introduced between the congested shallow water
model and Newton’s second law of motion for the body. Target applications for the model are identified
as icebergs and WECs, and results are shown for an HPA with a spring-damper PTO, with the model
used to optimize the PTO damping. In the conclusions it is noted that handling submerged objects is
a challenge, requiring layerwise models, since at least two water heights are necessary, and that the
transition between a totally submerged and a floating object is still an open problem at the moment.
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3.5. Weakly Nonlinear Models

The weakly nonlinear models consist of the weak-scatterer approximation (WSA) and WNPF.
Their application to WEC analysis is reviewed in the following Sections and collated in Table 4.

Table 4. Review of publications utilizing weakly nonlinear models for WEC simulation.

Ref. Method WEC Type Analysis

[163] Perturbation OWC Nonlinear free surface effects

[164] 2nd Order PF Tight moored piston-like WEC Performance of 2-body system with moonpool

[165] WSA PA with pendulum PTO Powering small scale data buoys

[166] 2nd Order PF 2 × HPA (Hemisphere) Array interaction

[167] 2nd Order PF Fixed cylindrical OWC Effect of weakly nonlinear waves on efficiency

[168] WSA HPA (Sphere) Comparison against linear and NLFK models

[169] 2nd Order PF 4 × HPA (Cylinder) Trapped modes in arrays

[170] WSA CETO Coupling with multi-body mechanical solver

[171] WSA Wavestar Comparison against linear and NLFK models

[172] WSA CETO and WaveRoller Comparison against linear models

[173] 2nd Order PF OSC array Sub-harmonic and higher-order effects

[174] 2nd Order PF Curved gate (2D) Nonlinear effects of the curved surface

[175] 2nd Order PF Curved OSC array Nonlinear effects of the curved surface

[176,177] 3rd Order PF Curved gate array Nonlinear effects of the curved surface

3.5.1. Weak-Scatterer

The WSA simplifies the FNPF approach, by treating the incident wave as a forcing term and
only solving for the scattered (diffracted and radiated) waves. The velocity potential and free surface
elevation are decomposed into the incident and scattered components, and by assuming the scattered
components are small (valid for bodies much smaller than the incident wavelength) the free surface
boundary conditions can be linearized on the incident wave elevation. No restrictions are made on the
incident wave elevation, allowing steep nonlinear waves to be considered, nor on the amplitude of the
WEC motions as the boundary conditions are determined on the instantaneous wetted surface of the
WEC. The WSA is expected to be more robust than FNPF models as the free surface elevation is not
an unknown to be solved and propagated from a wavemaker, which also has the advantage that the
mesh only needs to be refined near the body, as depicted in Figure 10.

The WSA was pioneered by Pawlowski for nonlinear ship hydrodynamics in the early 1990s [178]
but has only been applied to WECs in the past decade. The first usage is reported in Bretl [165] to
assess the performance of a small scale data buoy equipped with an oscillating pendulum PTO, then in
Merigaud et al. [168] for a comparison against linear Cummins and NLFK models, and as then via the
WSA code, under development at Ecole Central de Nantes (ECN) [170–172,179–182]. Letournel [179]
developed a WSA model, for submerged bodies, and an early-stage comparison against an FNPF
BEM solver is presented in [180], for the case of prescribed motion of a submerged cylinder, showing
good agreement and roughly an order of magnitude speed increase. The WSA model is extended
to a surface piercing cylinder in Chauvigné et al. [181], employing an ALE approach to adapt the
mesh to the moving body geometry and free surface. In Bozonnet et al. [171], the WSA model is then
applied to a scaled Wavestar float, demonstrating similar results to experiments and an NLFK model.
Wuillaume et al. [170,182] couple the WSA model with an advanced multibody theory mechanical solver,
inWave, to investigate simulating marine operations, performing a verification of the coupling procedure
through a test case on a CETO type WEC in [170]. The method is extended in [182], to handle the case of
multiple interacting floating bodies, by introducing a remeshing technique, which is validated against
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experiments for a test case involving two cylinders in regular waves. Letournel et al. [172] considers two
submerged WECs, the CETO and the WaveRoller, showing the calculated power compared to a linear
model is decreased for large-amplitude body motions and increased in steep waves.

(a) (b)

Figure 10. Schematic of the computational domains for (a) the weak scatter and (b) the FNPF methods.

3.5.2. Weakly Nonlinear Potential Flow

The WNPF approach considers the free surface and WEC body at their mean positions, similar to
LPF but extends the validity of the solution by using a perturbation scheme, based on Taylor series
expansion of the free surface and body boundary condition about their mean positions. This approach
offers the advantage of frequency-domain analysis, as well as efficient time-domain simulations since
the computational domain is static and the hydrodynamic coefficient matrices are the same for every
time step, thus only need to be set-up and inverted once.

WNPF has been used in marine hydrodynamics for decades, with many studies investigating
second-order wave loads on fixed and floating structures (see Shao [183] for a review). As such,
many programs have been developed to solve the second-order PF, which are reviewed in Lee
and Newman [184]. Shao and Faltinsen [185,186] perform a number of studies considering WNPF
and conclude that it is very difficult to go beyond third order in conditions with no current/forward
speed or only second order in conditions with a current/forward speed.

Considering WECs, early use of a perturbation scheme is presented in Vinje [163], investigating
nonlinear free surface effects in an OWC. Mavrakos et al. [164] simulate a WEC comprising two
concentric cylinders, where the outer cylinder is assumed stationary and the inner cylinder oscillates
in heave. The power produced in monochromatic waves is compared when second-order diffraction
forces are included or not, and when the outer cylinder is included or not, finding the negligible
difference in the output power due to the second-order forces for the single-cylinder case and modest
differences of 10–20% when the outer cylinder is included. Nader et al. [167] investigate the effect of
weakly nonlinear waves on the efficiency of a fixed cylindrical OWC, using an in-house FEM to solve
the first- and second-order problems. For some wave conditions, an increase in power output of over
50%, due to the contribution of second-order effects, is observed. The limitations of the second-order
hydrodynamics at low frequencies are then discussed in Nader [187]. Bellew and Stallard [166] include
second-order forces when investigating the spacing effect between two HPAs but conclude that the
second-order forces are small. Wolgamot et al. [169] consider power absorption by a square array
of four HPAs, which can support a near-trapped mode that provides strong interaction between the
WECs. Since the near-trapped mode can typically only be excited at second-order, the study sought to
maximize the significance of second-order effects, however, the results showed the additional power
to be 30% of the linear power for one extreme case and much smaller for all other cases.

Michele et al. [173] utilize WNPF to investigate the subharmonic and higher-order hydrodynamics
in arrays of OSCs in a channel showing that subharmonic resonance can significantly increase energy
production. In Michele et al. [174], a surging gate-type WEC with a curved surface is considered,
and it is shown that the effect of the gate shape only forces the first-harmonic component for the
higher-order theory. Michele et al. [175–177] then consider an array of the curved gate-type WECs, in a
channel [176,177] and in the open sea [175], showing constructive interactions, in terms of generated
power, that are not possible for linearized theories or flat WECs.
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3.6. Partially Nonlinear

Partially nonlinear models are based on LPF, but seek to improve the validity by calculating the
body boundary conditions on the instantaneous wetted surface at each time step (collated in Table 5).

Table 5. Review of publications utilizing partially nonlinear models for WEC simulation (Note: NLFK
method not collated because of the large number of publications).

Ref. WEC Type Analysis

[188] OSC Improved model accuracy for large pitch angles

[189] OSC Improved model accuracy for large pitch angles

[190] Submerged HPA Demonstration of method

[191] Reconfigurable OSC Modeling change in hydrodynamics for moving control surfaces

[35] HPA Modeling the occurrence of parametric pitch resonance

[192] OSC Improved model accuracy for large pitch angles

3.6.1. Time-Varying Parameters

This method uses the linear Cummins model framework but applies a gain scheduling approach
to update the model parameters as the position and orientation of the WEC changes in time.
McCabe et al. [188] first applied this method, considering the case of an OSC, where the time-varying
parameter model is realized by interpolation between the appropriate model parameter values
calculated for a set of discrete WEC pitch angles. The results of the time-varying model are shown to
match the experimentally measured results closer than those predicted by a conventional linear model.

Crooks [189], Laporte Weywada et al. [192], and Papillon et al. [191] also utilize the time-varying
parameter method for an OSC [189] calculates the linear model parameters, considering the BEM data
for the OSC flap at 2 degrees increments between ±40 degrees, and interpolates between these values
to obtain the parameter values at the instantaneous flap angle for each time step, showing improved
results over the conventional linear model compared to analytical and experimental results [192]
implement the method in the WEC-Sim software by using a database of hydrodynamic coefficients
calculated at every 10-degrees of the OSC flap angle between ±40 degrees, and applying the data
closest to the current angle at each time step (rather than interpolation). The results were compared
against the regular linear model for over 50 sea states on scatter diagram, showing differences in
predicted power output of over 20% for more than one-quarter of the sea states [191] consider an OSC
with movable control vanes [40]. Unlike the other OSC studies which calculate the model parameters
for varying flap pitch angle [191] calculate the hydrodynamic parameters for varying positions of the
control vanes, to model the hydrodynamic behavior of the device across its full range of vane angles.

Schubert et al. [190] consider a submerged PA, using look-up tables to incorporate
position-dependent wave excitation and radiation hydrodynamic parameters, as well as drag force
coefficients, in heave, surge, and pitch. The results demonstrate the model’s ability to capture some
higher-order nonlinearities such as drift forces and more closely match CFD results, compared to the
linear model, with only a small increase in computation time.

While the previous methods utilized BEM solvers based on LPF to obtain the hydrodynamic
parameters, the work in Davidson et al. [35,193] use system identification techniques on output data
from RANS experiments. In [193] it was shown that models identified in larger amplitude operating
conditions had an increased amount of hydrodynamic damping, as the state space representation of
the radiation force in the linear Cummins equation implicitly incorporated both the wave radiation
and viscous damping effects in the RANS data [35] measured the hydrostatic force on an HPA for
range of heave and pitch displacement configurations to identify a time-varying restoring torque
parameter, dependent on the instantaneous heave and pitch displacement, to analyze the occurrence
of parametric pitch resonance, which can not be captured by a purely linear model.
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3.6.2. Nonlinear Froude–Krylov

A common approach in WEC analysis is to consider the wave radiation and diffraction terms
as linear and only include NLFK forces. For example, in the nonlinear modeling of the Wavestar,
Guerinel et al. [194] justify focusing on the FK forces due to their dominant impact on the global
dynamics of the systems, as well as the possibility of calculating these forces in a straightforward
manner. Similarly, NLFK forces are included as the first nonlinear extension to the original linear
hydrodynamics in the WEC-Sim software [195]. The NLFK excitation force corresponds to integrating
the pressure from the undisturbed incident wave field over the evolving instantaneous wetted body
surface. Additionally, the hydrostatic force is often also calculated on the instantaneous wetted body
surface, with an NLFK model incorporating both nonlinear excitation and restoring forces.

This modeling approach was first applied to WECs in Gilloteaux et al, for the SEAREV [196,197]
and WaveBob [198]. In [198] the contributions from the various forces are compared, highlighting that
for the HPA, WaveBob, the hydrostatic and dynamic FK forces are the most dominate. In a follow on
investigation of parametric roll in the SEAREV [33], the nonlinear PF model only considers the NLFK
force, under the assumption that the FK force is the main component of the hydrodynamic force.

However, the dominance of the FK force is only generally true for the case of small bodies
oscillating in heave, such HPAs, but is less true for surge/pitch forces, or for larger bodies [7].
Additionally, within the class of HPA, Penalba et al. [199] showed that the impact of the NLFK force
is only significant for devices with a non-constant cross-sectional area. Furthermore, this approach
would only be applicable to surface piercing HPAs and not to fully submerged bodies. However,
a large portion of proposed WEC designs does satisfy these criteria, considering spherical shaped
buoys or spar-type structures with flared tops designed to increase their hydrodynamic activeness.
Indeed, in recent years, the NLFK modeling approach has been employed to many WEC application
cases, too numerous to collate in this review. For example, 9 of the 25 models submitted in the first
joint reference paper for the International Energy Agency Ocean Energy Systems Task 10 WEC Modeling
Verification and Validation group [200], utilize partially nonlinear models with NLFK forces.

In the early studies by Gilloteaux et al. [196–198] the incident wave field is given by an HOS
method, permitting the simulation of very steep waves, highlighting another improvement in accuracy
of the NLFK compared to the linear Cummins equation model. Indeed, since the NLFK force is
obtained by integrating the pressure distribution from the input waves over the WEC surface, the more
realistic the wave field model and resulting pressure fields, the more accurate the NLFK calculations
will be. A comparison of the different wave theories and pressure field models is given in Giorgi and
Ringwood [201], showing that different degrees of accuracy, for increasing computational costs, can be
achieved in modeling the wave field and, likewise, the complexity of the pressure formulation has a
significant influence on the computational effort required to compute NLFK force.

The accuracy and computational cost of the NLFK force are also strongly influenced by the
method to calculate the instantaneous wetted body surface. The main challenge here is the appropriate
consideration of partially submerged cells at the free-surface when discretizing the WEC geometry
with a mesh. Penalba et al. [15] review the main strategies for accurately estimating the wetted surface:
(1) using a very fine mesh and only considering the cells totally submerged below the instantaneous
free-surface at each time-step, or (2) using a remeshing routine to modify the shape of cells, on the
border of the free-surface, to be either completely submerged or out of the water. Babarit et al. [33]
compare both strategies, concluding that both methods achieve the same level of accuracy, but the
fine meshing approach requires less computation time. A third computationally efficient approach is
available for axisymmetric geometries, which calculates the NLFK analytically without the use of a
mesh. Lawson et al. [195] compare the numerical solution obtained by discretizing the body surface
with triangular elements versus an analytical calculation, for a WEC with a simple spherical geometry,
showing a good match between results. Giorgi and Ringwood [36] demonstrate the analytical approach
to calculate NLFK forces in 6 DoF for an axisymmetric WEC, estimating an order of magnitude speedup
compared to mesh-based approaches.
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3.7. Including Viscous Effects

All of the modeling methods from Sections 3.2–3.6 are based on the assumption of an inviscid
fluid. The effect of neglecting viscosity in WEC analysis is discussed in Section 2.1.1. This section
reviews the methods to include these viscous effects in efficient nonlinear hydrodynamic models.

3.7.1. Viscous Force Term

The most common way to include the effects of viscosity is by introducing a viscous force term,
Fv, acting on the WEC. The viscous term is typically expressed following Morison’s equation [202]:

Fv = Cd ẋ|ẋ|+ Cm ẍ, (3)

consisting of a quadratic damping term (Cd ẋ|ẋ|) and a linear inertia term (Cm ẍ). However, often only
the damping term is added to WEC hydrodynamic models. The velocity, ẋ, and acceleration, ẍ, should
represent the relative WEC-water motion, but to simplify the problem, often the motion of the water
is neglected and only the value of the WEC velocity and acceleration is used. The drag coefficients,
Cd and Cm, are determined analytically, numerically or experimentally.

Li and Yu [11] perform a comparison of the predicted power output from a linear Cummins
type model with added quadratic viscous damping and a RANS model, for an HPA in regular waves.
While the run time of the RANS model takes 12 h per frequency, the linear Cummins type model with
the quadratic drag term can simulate 30 frequencies in less than an hour. However, the selection of an
appropriate drag coefficient, Cd, is not clear, with the results for Cd = 0.5 matching the RANS results
best at high frequencies, whereas for lower frequencies Cd = 1 performs best.

Babarit et al. [203] also deal with the problem of selecting an appropriate drag coefficient, in their
benchmarking study of different WEC types, by employing published Cd values for similar geometries.
To assess the impact of the uncertainty in the Cd values on the power output, the coefficients are varied
from 25% to 200% of the reported value, resulting in an uncertainty in the yearly power output of up
to 30%. The uncertainty in choice of Cd is discussed in Penalba et al. [15], where examples from the
literature are shown to estimate the drag coefficients for OSCs with values varying from 1.9 up to 8.

A number of studies seek to identify appropriate drag coefficients using data from PWT
experiments on scale model WECs [204–209]. The work in [207,208] consider the drag on a heave
plate for an HPA and show that identified coefficients have strong intracycle variations, but that
constant coefficients can nonetheless result in reasonable model agreement with the data. Indeed,
while identifying the drag from PWT data generally allows the coefficients to be tuned so that the
numerical and experimental results agree well, it is not guaranteed that the viscous effects will scale
proportionally from the PWT to the full-scale WEC (as discussed in Section 2.2.4). For example,
experiments were performed at different model scales in Mundon et al. [209], showing that while the
scaling laws hold for high Keulegan–Carpenter (KC) and low Reynolds numbers, they break down
and the drag coefficients are overestimated for lower KC numbers.

An effective approach to overcome the scaling issue is to perform full-scale experiments using
RANS simulations, as demonstrated in [17,210–216]. The discrepancies in drag coefficient values
and methods to calculate them for a spherical HPA is investigated in Giorgi and Ringwood [217],
where it is concluded that estimating the drag coefficient is challenging, resulting in uncertainties
and inconsistencies in reported values for the same geometry in different publications. Using any
drag coefficient within the uncertainty range is shown to significantly improve the prediction of their
hydrodynamic model, however, overestimations in the drag coefficient value are seen to cause lower
errors than underestimations, therefore, it is better to select a larger rather than smaller value.

Considering the modeling options for flap-type OSC WECs, Dias et al. [218] recall that generally
speaking, the use of Morison’s equation is permitted when the dimension of the body is small
compared to the wavelength and the KC number is large, however, neither of these typically hold
for flap-type WECs. For numerical models of OSCs, Folley et al. have used effective linear [219]
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and quasi-linear [220] drag laws in place of the standard Morison (quadratic) drag law. The use of
linearised equivalent damping terms to represent the viscous damping is also common, particularly in
cases where linear models are desirable, such as in model-based control algorithms [221].

3.7.2. Potential Flow

Cummins and Dias [222] present a more novel approach of including viscosity to PF models by
modifying the inviscid theory in regions of the fluid domain where the effects of viscous dissipation
are non-negligible. In the case of an OSC, this is near the edges of the flap, where a control surface is
defined, across which a pressure discharge is imposed. The pressure discharge is modeled dependent
on the pressure drop and the local flow velocity, which characterizes the effects of viscous dissipation.
This approach is further demonstrated in Feng, Chen, and Dias [223], considering three case studies,
including an OSC, which incorporates the pressure discharge into a linear BEM model. Lee and
Zho [224] follow the work in [222], using a different method of solution, representing the unknowns
in terms of generalized modes. As an illustrative example, [224] show the same OSC case as in [222],
but use a HOBEM to reduce the computational error. An apparent drawback of the method in [222] is
that there is no first-principles method to set values for the pressure drop coefficient, nor the geometry
of the dissipation region. It follows that similar levels of expert judgment or empirical measurements
are required for this method, like in the viscous force term method (Section 3.7.1).

For the case of a floating OWC, the Backward Bent Duct Buoy, the work in [75–77] captures
viscous effects using an additional damping coefficient imposed on the chamber free surface boundary
conditions in their NLPF models. The additional damping is expressed as a viscous loss pressure in the
equations, proportional to the chamber free surface velocity squared. Further viscous damping due to
body motions is introduced in Koo and Kim [76] via a linear equivalent damping term proportional to
the body velocity, and in Kim et al. [77], via a quadratic damping term proportional to the body velocity
squared. The coefficients of proportionality for the viscous loss pressure and body motion terms in
their models are tuned from experimental data. Similarly, for the case of a fixed OWC, Wang et al. [43]
introduce in their 2D FNPF HOBEM model, an artificial viscous damping term to the dynamic free
surface boundary condition inside the OWC chamber, to account for the energy loss due to vortex
shedding and flow separation.

Jiang and Yeung [79] extend the random vortex algorithm [225], into the free surface
random-vortex method which can accommodate bodies of arbitrary shape and include the effects of
free surface waves, by including a vorticity-stream function into the FNPF BEM. They use this method
to investigate viscous effects on rolling-cam WECs, such as Salter’s Duck.

3.7.3. Euler Equations

Unlike PF models, the Euler equations do not assume the flow to be irrotational and can, therefore,
support vorticity. Palm et al. [47] show that Euler simulations are able to produce vortex shedding from
a WEC, resulting in induced drag effect, even though viscosity is neglected from the Euler equations.
Although the absence of viscosity means that there are no shear stresses on the surface of a WEC,
and therefore no boundary layer separation, the high pressure and velocity gradients near walls with
high curvature or sharp edges, can generate vortex shedding, caused by the convection terms in the
Euler equations when using FDM or FVM models.

3.7.4. Domain Decomposition

An alternative approach to accurately include viscous damping forces, that doesn’t require
empirical estimates, is the domain decomposition method, detailed in Section 4. By coupling a RANS
model in a small domain around the WEC, to a lower fidelity model in the bulk of the fluid further away
from the WEC, the nonlinear viscous WSI effects can be captured for a fraction of the computational
costs of a full RANS simulation.
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4. Domain Decomposition Methods

To reduce the overall computational burden of high fidelity methods, domain decomposition
methods seek to decompose the entire problem into subdomains and apply different levels of model
fidelity to the various subdomains. Domain decomposition allows lower-fidelity models to be used
in the bulk of the domain to decrease the computational load, which are then coupled to more
computationally heavy models in the immediate vicinity of the WEC, for high fidelity capturing of the
nonlinear WSI. An example of this is shown in Figure 11, where the incident wave field is modeled
using an NLPF model and the wave-WEC interaction is modeled using RANS.

Although relatively new to wave energy, these methods were introduced to shipping more than
two decades ago [226], after being first utilized in aerodynamics [227]. Considering WEC analysis,
an early domain decomposition strategy is presented in Clement et al. [228,229], where the outside
of an OWC is modeled using a frequency domain (FD) model and the inner chamber is modeled
using a time-domain (TD) BEM model to account for nonlinearities in the OWC. Other types of
model-to-model coupling have been reported and are reviewed in the following Sections and collated
in Table 6.

RANS

NLPF

WEC

NLPF

RANS

Top view

Side view

Figure 11. Schematic of domain decomposition using nonlinear potential flow (NLPF) in the far-field
and Reynolds averaged Navier–Stokes (RANS) in the near field.

Table 6. Review of publications utilizing Domain Decomposition for WEC simulation.

Ref. Method WEC Type Analysis

[228,229] FD to TD PF Pico OWC Efficient TD simulations

[230] Wave model to PF Array (HPA) Wave interactions with WEC array

[231] Wave model to RANS OSC Modeling real bathymetry

[232] PF to I.RANS to C.RANS OSC Slamming loads

[233,234] Wave model to PF Array Multiple WECs in variable bathymetry

[235,236] Wave model to PF Array (OSC) Wake effects in arrays

[237,238] Wave model to PF Multiple Arrays (HPAs) Impact of WEC array separation distance

[239] Wave model to PF Arrays (HPAs and OSCs) Comparison of far-field effects

[240,241] Wave model to PF Array (HPAs) Validation of model

[242–244] NLPF to SPH HPA Proof of concept

[245] NLPF to SPH OWC Demonstration of method

[246] NLPF to RANS HPA Blind comparison test [247]



J. Mar. Sci. Eng. 2020, 8, 35 27 of 65

4.1. Wave Model to Potential Flow

Bingham [248] presents an early implementation of domain decomposition, to model the motion
of a moored ship in a harbor, stating “A combination of established methods is used in an attempt to
account for the most important physical processes involved in this complicated problem, while keeping
the computational burden modest.” A Boussinesq-type model is used for the wave propagation from
deep water into the harbor and then PF is utilized within the harbor, for both the wave transformation
over the bathymetry and the WSI with the ship. In Ducrozet et al. [131] a decomposition approach is
used for efficient WSI, with the intention of enhancing the efficiency of the NLPF model, OceanWave3D.
The domain is decomposed by splitting all solution variables into the incident and scattered fields,
where incident wave field is given explicitly by a dedicated wave model (which is assumed to
be accurate and very fast compared to the overall solution), while the scattered part is solved by
OceanWave3D.

Considering WECs, this approach has been applied to a number of cases involving WEC arrays.
Charrayre et al. [230] first applied this approach to study the interactions of waves with an array
in varying bathymetry, applying a BEM model to solve the radiation-diffraction problem locally
around each WEC, combined with a model based on the mild slope equation at the scale of the array.
Belibassakis et al. [233,234] present a similar approach considering a WEC array in varying bathymetry,
motivated by the fact that wave-seabed-multiple body interactions could have a significant effect
but could not be resolved within their wave propagation model. Tomey-Bozo et al. [235,236] use a
depth-averaged mild-slope wave propagation model (MILDwave) for the far-field and resolve the near
field effects using an LPF solver (NEMOH), to study the wake effects behind an array of OSCs.

Considering very large domains, spanning entire WEC farms comprising numerous WEC arrays,
recent work from Ghent university [237–241,249,250] also couple MILDwave and NEMOH. In addition,
Verbrugghe et al. [250] compare using the NLPF solver OceanWave3D to model the incident wave
field against MILDwave and finds relative errors of less than 5%. The utility of the method is
demonstrated in Balitsky et al. [238,249] where it is used to assess the impact of power production
of WEC array separation distance in a wave farm, and in Fernandez et al. [239] where it is used
to compare the far-field effects of arrays of HPAs and OSCs. The approach is validated against
experimental data in Fernandez et al. [240], considering an array of 9 HPAs over varying bathymetry,
showing good agreement with small differences between 3–11%. In Fernandez et al. [241] a very
similar validation is shown, in this case considering a single HPA, an array of 5 HPAs and an array of
9 HPAs, with differences between the experiments and simulation of less than 10% for all cases.

4.2. Wave Model to RANS

The main disadvantage of the wave model to PF domain decomposition presented in the previous
section is the use of linear hydrodynamics to model the WEC dynamics. Indeed, when validating the
model against experiments Bingham [248] noted: “Some tuning, in the form of empirically obtained
damping coefficients, is, however, necessary in order to get a reasonable prediction of the response
amplitudes near resonance, when the linear hydrodynamic damping is very small.” To overcome this
drawback, the method in this section considers wave model to RANS domain decomposition.

To accurately investigate wave loads on offshore wind turbine foundations, Christensen et al. [251]
utilize a Boussinesq model for the outer wave field (DHI ‘Mike21 BW’ [252]), while the inner region
surrounding the structure is modeled with a RANS solver. Similarly, Wei et al. [231] couple a Boussinesq
model (FUNWAVE) with a RANS model (ANSYS FLUENT), due to large computation times and
significant reflections from the boundaries observed in their previous RANS studies of OSCs.
The coupled model takes advantage of the Boussinesq wave model simulating the wave propagation
effectively and eliminating the reflection problem, and the RANS model providing the local flow
details comprehensively. The model is validated by comparing the results against the pure RANS
model and PWT experiments. The computational cost of the coupled Boussinesq-RANS model is
reported to be about 40% less than the pure RANS model.
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4.3. Potential Flow to RANS

The utility of the PF to RANS domain decomposition stems from the fact that neither solver
is completely well suited to study WSI. PF cannot take into account viscous effects, which play an
important role close to the WEC. Whereas, RANS cannot efficiently simulate wave propagation, due to
the requirement of a very fine mesh to avoid inherent numerical damping, which significantly increases
the computational expense. Therefore, coupling PF in the far-field and the RANS in the near-field seeks
to overcome these drawbacks. A number of different methods have been implemented to achieve this
and reviewed separately in the following subsections.

4.3.1. SWENSE

Early adoption of this decomposition, to allow viscous flow simulation of ships maneuvering in
waves, is the SWENSE (Spectral Wave Explicit Navier–Stokes Equations) approach which has been
developed since 2003 at ECN [130,253–259]. The SWENSE formulation modifies the initial problem to
solve the diffracted flow only. It consists of splitting all unknowns of the problem (velocities, pressure
and free-surface elevation) into the sum of an incident term and a diffracted term. The incident
terms are described explicitly using a spectral NLPF model. Thus only the part of the grid in the
vicinity of the structure needs to be refined. Far from the body, a stretched grid allows efficient
damping of the diffracted flow. The incident wave terms are then introduced explicitly in a RANS
solver whose equations have been modified by decomposing each physical variable in the sum of an
incident variable and a diffracted one. The diffracted field is the only unknown solved by the modified
RANS code. Originally the SWENSE method was developed for single-phase RANS solvers, however
recently it has been extended to two-phase RANS solvers within the OpenFOAM framework [258,259].
The SWENSE approach has also been adopted by the CFD group at the University of Zagreb, who are
lead developers in the foam-extend fork of OpenFOAM and the Naval Hydro Pack therein, which has
been applied for naval architecture applications [260–262]. Simulations using the Naval Hydro Pack are
submitted in the FPSO blind comparison test [125] using this SWENSE model [263].

4.3.2. Grid2Grid

Grid2Grid is a HOS wrapper program for RANS solvers, allowing ECN’s HOS-Ocean and
HOS-NWT programs (detailed in Section 3.3.2), to be coupled with external RANS programs. Grid2Grid
has recently been released by ECN, as an open-source software [264]. A validation study is conducted
in [265], using Grid2Grid with OpenFOAM to simulate 2D and 3D regular and irregular waves, plus a
1000 year return period extreme waves, and comparing with experimental results.

4.3.3. OceanWave3D

Paulsen et al. [266] coupled OceanWave3D with OpenFOAM to enable efficient calculations of
wave loads on surface piercing structures, motivated by studies showing that RANS simulations
can accurately compute the hydrodynamic forces related to the “ringing” phenomenon, but that the
simulations were restricted to short time series in a limited domain, due to substantial computational
requirements. One way coupling was implemented, via relaxation zones, where the target solution for
RANS is given by the NLPF solver. This coupling of OceanWave3D to OpenFOAM, now comes inbuilt
with the wave generation toolbox waves2Foam [267]. Kemper et al. [268] extend this to include two-way
coupling, where the solution of the NLPF is also influenced by the waves exiting the RANS domain,
with the aim of being able to simulate WEC arrays and provide a validation case study considering
wave propagation over a submerged bar.

4.3.4. qaleFOAM

The QALE-FEM software has recently been coupled with OpenFOAM, using a domain decomposition
approach, to give qaleFOAM. Li et al. [269] detail the coupling and present an illustrative case study
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of a fixed submerged horizontal cylinder, subjected to input waves and currents. Li et al. [270]
use qaleFOAM for the simulations of the FPSO subjected to focused waves in the blind comparison
test [125] and to the moored HPA-like buoys subjected to focused waves [246] in the more recent blind
comparison tests [247].

4.3.5. PVC3D

PVC3D (Potential Viscous Code 3D) is developed by MARINTEK, originally motivated by
the works in Kristiansen [271] and Kristiansen and Faltinsen [272] to improve the modeling of
“gap resonances”, which occur in moonpools or when two ships/structures are in close proximity.
Around the gap resonance frequency, PF methods greatly overestimate the water and body motions,
because the damping induced by flow separation is not captured, which can be rectified using the
domain decomposition approach shown in Figure 12. A distinct feature of this particular domain
decomposition is the submergence of the RANS-domain away from the free surface region, which
improves the computational efficiency, as demonstrated by the moonpool study in [272], where 30 wave
periods only require 73 s to simulate on a 2.4 GHz computer, and it compares well with experiments.

PVC3D is implemented in the OpenFOAM environment. Kristiansen et al. [273] present a
validation study against experiments, as well as simulating the same cases in a pure RANS domain,
where the simulations with PVC3D are between 3 and 4 orders of magnitude faster with comparable
accuracy. The authors discuss that each simulation, comprising 40 wave periods, takes about 15 min
on 4 cores, which is compatible with time-requirements in a design context, easily allowing parameter
studies to be performed. However, they also note that they would expect run-times to increase
for more complex geometries. PVC3D was later used to investigate the nonlinear roll damping on
ships Ommani et al. [274], where the authors conclude that by using PVC3D, parameter studies are
made possible.

In Cao et al. [275], an assessment of an LPF code (WAMIT), RANS code (Star-CCM+) and PVC3D
is performed for waves inside of a moonpool, by validating results against experiments and comparing
their runtimes. As expected, the WAMIT results over predict amplitudes around the resonance, whereas
both the Star-CCM+ and PVC3D codes compare well to experiments. Comparing runtimes shows
that the WAMIT simulations took less than 7 min on a single core, the PVC3D simulation took less
than 16 min running on four cores, whereas the Star-CCM+ simulations took between 900–1020 min
running on a 48 core cluster.

RANS

NLPF
Ship

Pertubation expansion of free surface boundary  

Figure 12. Domain decomposition to capture flow separation around a ship in [272].

4.3.6. Others

Colicchio et al. [276] couple a BEM with a RANS solver, using a level-set technique to track
the free surface interface, to handle large deformation, wave breaking, and fragmentation of the
free surface. The BEM is used in the fluid domain wherever the interface is smooth and the RANS
field solver used in the regions where PF theory is not suitable. They demonstrate the method on
two validation cases considering; a dam break with impact on a wall and a water-on-deck of a ship
examples. Siddiqui et al. [277] present a preliminary 2D domain decomposition example, coupling
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HPC to OpenFOAM, for the intended purpose of investigating the hydrodynamics of damaged ships.
Their study includes validation against experimental data and videos from a model scale damaged ship
hull which experiences flooding, sloshing and piston mode resonance inside of the hull. They show
that the mesh size within the HPC domain can be much coarser than within the RANS domain as
it has higher spatial accuracy. A preliminary 2D domain decomposition using the HPC method
is also presented in Hanssen et al. [278], where the FNPF outer domain is coupled to a level-set
Navier Stokes solver for the inner domain around the floating body. Ferrer et al. [232] develop a new
OpenFOAM-based solver, "wsiFOAM", that couples NLPF to incompressible RANS, and then couples
the incompressible RANS to a compressible RANS region, due to the importance of air effects on the
slamming loads of a flap.

4.4. Potential Flow to SPH

SPH is a mesh-free, particle-based, Lagrangian technique for CFD, making it useful for solving
problems with large motions/deformations and wave breaking. Like the mesh-based methods
reviewed in this paper, there are varying levels of computational complexity that can be added
to or simplified from the SPH method, such as weakly compressible versus fully compressible [279].
An overview of SPH for marine renewable energy is given in Stansby [280].

Considering WEC applications, domain decomposition has been applied to couple OceanWave3D
with the SPH solver DualSPHysics in [242–245]. An initial proof of concept, with two way coupling,
is demonstrated using a simple 2D HPA in Verbrugghe et al. [242]. Overall reasonable results are
obtained, however, a number of discrepancies are evident in the results, due to the early stage in the
development of this concept at the time. Regarding runtime, they utilized a GPU with 1920 cores and
state that due to considerably long computation times (approximately 0.7 h for 1 s of simulation time with
1 million particles), it is necessary to keep the SPH domain as small as possible. Verbrugghe et al. [243]
then presents a number of 3D WEC experiments, in an uncoupled SPH domain (requiring 23.4 million
particles and 4.2 h for 1 s of simulation time) and discuss the possibility of coupling the SPH domain
with OceanWave3D, showing the initial results from the 2D case. A more in-depth description and
assessment of the coupling methodology is given in Verbrugghe et al. [245], where amongst a number
of 2D test cases, a 2D OWC is considered. The results are compared against experiments, considering
a purely SPH domain, as well as the decomposed domain coupled with OceanWave3D, where it is
estimated an effective computational speed-up of 134–420% by using the domain decomposition
approach to replicate the experimental wave flume test case. Verbrugghe et al. [244] then extend the
coupling to 3D, considering a validation test case of an HPA in a narrow wave flume, showing good
agreement for surface elevation, heave motion and horizontal surge force for a regular wave input.
Here again, the results of a purely SPH domain are compared against the domain decomposition
method and a speed-up in computational time of over 400% is observed.

Fourtakas et al. [281] present a very preliminary stage domain decomposition study, demonstrating a
one-way coupling of SPH with the NLPF code QALE-FEM for a 2D wave propagation case. The future
direction of this study is to develop a hybrid code capable of simulating large domains with an accurate
prediction of extreme wave forces and slamming on offshore structures. Zhang et al. [282] then apply
the SPH coupled to QALE-FEM code and apply it to the moored HPA-like buoys subjected to focussed
waves in the blind comparison tests [247].

In additional to PF, other couplings with SPH have been presented in the literature,
with Kassiotis et al. [283] demonstrating a one-way coupling with a Boussinesq-type model and
Kumar et al. [284] presenting a coupling within the OpenFOAM framework, where the SPH method is
used at free surfaces or near deformable boundaries and the mesh-based FVM is used over the larger
fluid domain.
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4.5. Potential Flow to Lattice Boltzman

The LB method represents the fluid as a field of particle distribution functions f (t, x, ẋ), specifying
the probability of encountering a particle at position x, at time t, with velocity ẋ. The evolution of
these distribution functions, f , is described by the Boltzmann equation, discretized in space and time,
using a standard FDM. Turbulent effects can be modeled using wall functions [285,286] or captured
at the sub-grid scale via a LES model (in combination with adaptively refined grids to improve
computational efficiency and accuracy [287,288]). The efficiency and accuracy of the LB method
have been demonstrated in many publications. For instance, Geller et al. [289] present a study of
transient laminar flows benchmarked against finite element and finite volume solvers. In addition,
the method can be efficiently parallelized to benefit from massively parallel hardware. Recently, GPU
implementations of an LB model have achieved remarkable performance on GPUs [290].

LB models have been considered for use with domain decomposition for marine applications.
Janssen et al. [291,292] report on the development and initial validation of a new hybrid numerical
model for strongly nonlinear free-surface flows, including wave breaking and WSI. In this preliminary
implementation, only a weak coupling is used where the nonlinear wave processes can accurately be
modeled, prior to breaking, using FNPF. As the wave approaches breaking, the FNPF simulation can
be stopped and the simulation data transferred to the LB model as an initial condition, and the LB
model then simulated the highly nonlinear wave breaking process. This is an example of temporal
domain decomposition, discussed in Section 4.7

Strong coupling between the FNPF-NWT and the LB model has been demonstrated by
O’Reilly et al. [293] and Mivehchi et al. [294] who report on recent progress and validation of a
3D hybrid model for naval hydrodynamics problems. The coupling is implemented based on a
perturbation method, in which both velocity and pressure are expressed as the sum of an inviscid
flow with a viscous perturbation. The far- to near-field inviscid flows are solved with an FNPF
theory, and the near-field perturbation flow is solved with an LB model whose solution is forced by
results of the FNPF-NWT. The LB model developments in this work are based on the highly efficient,
GPGPU-accelerated, LB solver ELBE [295] (www.tuhh.de/elbe). Although the ultimate goal for the
reported work is to model seakeeping problems for multiple DoF floating bodies advancing in strongly
nonlinear irregular wave fields, the considered case studies only consider turbulent flow over a flat
plate and the turbulent flow around a submerged hydrofoil. More recently, [296] have presented WSI
with surface piercing bodies (monopile and a ship hull), using domain decomposition to capture the
local viscous solution around the body with a LB model and the inviscid solution away from the body
using FNLPF solved with a BEM, using cubic B-splines, and accelerated with the parallel FMM.

4.6. Incompressible to Compressible

The effect of air compressibility inside an OWC chamber is discussed in Section 3.1.1. Domain
decomposition could be leveraged in this case. This solution was suggested in the review by [297] and
demonstrated in [232] for an OSC to accurately capture slamming loads.

4.7. Temporal Domain Decomposition

The use of temporal domain decomposition was discussed with the LB domain decomposition
methods in Janssen et al. [291,292]. With consideration of WEC simulation, it may be possible to
leverage a similar approach where lower-fidelity models can be run during conditions where minimal
nonlinear effects are expected to occur, and then the solution transferred to higher fidelity solvers
when certain thresholds in wave steepness or relative device/fluid motion are detected, for example.
Bacigaluppi et al. [298] investigate detection criteria for wave breaking in their Boussinesq model,
which then uses temporal domain decomposition to switch the Boussinesq equations to the nonlinear
hydrostatic Shallow Water equations, where wave breaking occurs and models wave breaking fronts
as shocks.

www.tuhh.de/elbe
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5. Computationally Efficient Modeling Techniques

With the goal of speed performance, a number of new modeling techniques have been considered
in the field of wave energy, allowing high fidelity simulation of WEC performance but with low
computation times to enable use within design loops. These techniques are reviewed in this section,
namely: parametric models identified from data, probabilistic models, and nonlinear frequency domain
(NLFD) modeling and are collated in Tables 7–9, respectively.

5.1. Parametric Models Identified From Data

A parametric model describes the WEC response by a finite set of parameters. Using system
identification (SID) techniques, as depicted in Figure 13, the parameter values can be tuned using
input/output training data from the WEC system, so that the model produces the same outputs
given the same inputs. By selecting a computationally efficient model structure, with parsimonious
complexity, the parametric model can achieve high fidelity (equivalent to the data it is trained upon)
whilst retaining run times comparable to Cummins equation type models. An overview and examples
of this approach are detailed in Ringwood et al. [299].

Input 

 

System
System
output 

 

Model
Model
output 

 

Identification
algorithm

Parameters 

Figure 13. Schematic of the system identification (SID) approach to obtain computationally efficient
parametric models. The real system to be modeled generates the input and output data which are
utilized by the identification algorithm to estimate the parameters of the model.

Table 7. Review of publications utilizing system ID for WEC simulation, detailing the parameterization
employed, the data source used, the type of WEC investigated, and the analysis performed.

Ref. Parameterization Data WEC Type Analysis

[300] State-space RANS HPA ID of amplitude dependant equivalent
[193] linear models

[301] State-space RANS OWC Heave motion in OWC chamber

[204] Cubic polynomial PWT Wavestar Nonlinear restoring force

[302] Hammerstein- Thermo- OWC Air pressure fluctuations inside
[303] Weiner Volterra dynamics OWC chamber

[304] NARX RANS HPA Nonlinear hydrostatic restoring force

[305] ANN RANS HPA Optimization of input/out data for SID

[306] Volterra theory PWT OWSC ID of accurate models from PWT data

[307] ARX, Hammerstein, KGP RANS HPA Nonlinear excitation force

[308] ARX, KGP, ANN RANS HPA SID of nonlinear discrete-time models

[309] Grey- and black-box PWT HPA Investigation of SID techniques

[310] Pseudo-spectral RANS HPA Online ID of time-varying equivalent
[221] linear models for adaptive control

[311] Multi regression model CFD + PWT OWC Empirical model design tool

[312] ARX, KGP PWT Wavestar Nonlinear model ID from PWT data
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5.1.1. Model Structures

Figure 14 shows a schematic of the different model structures considered for SID of WEC
hydrodynamics. The wave input to body motion, M1, is demonstrated in [305,308,312], and mainly
serves as a test case during the SID process, as the full WEC model will require an input PTO force at
minimum, and possibly a mooring force if a floating WEC is considered. Including the input force
directly, resulting in a multiple-input model, M2, is demonstrated in [309] and represents a black-box
modeling approach (discussed in Section 5.1.2). An alternative, grey-box, modeling approach, is to
decompose the WEC model into two sub-models (Figure 14c), considering input waves to excitation
force and then input force (comprising the sum of excitation, PTO, and mooring forces) to body motion.
The identification of excitation force models, M3, is demonstrated in [307,309] and input force to body
motion models, M4, in [304–306,308]. A lighter shade of grey-box modeling (Figure 14d) can include
identifying models for restoring, radiation and/or viscous forces as a function of the WEC motion, M6,
and then adding these as input forces, as demonstrated in [193,204,221,300,301,304,309,310] and also
discussed in Section 3.7.1 for the viscous forces.
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Figure 14. Schematic of the various inputs and outputs to the models.

5.1.2. Model Parameterizations

SID provides significant flexibility in the choice of model parameterization, with respect to the
trade-off between model fidelity and computational costs, and whether the parameters and variables
relate to actual physical quantities or not. The relationship of the model structure to the physical
properties of the system, categorizes the model parameterization into different shades of darkness,
ranging from white- to black-box models. The structure of white- and grey-box models are well
connected to the physical properties of the system and the model variables usually represent physical
quantities. Whereas, the internal structure of black-box models bear no resemblance to the physical
system and are only related via the replication of the same output given the same input.

An example of a white-box model, is Newtown’s Law of Motion, F = ma, where every term is a
physical quantity. Given the complexity of the WSI problem for WECs, it is necessary to introduce
some shade of darkness when modeling this complicated process. Examples of identifying a grey-box
model are shown in [193,221,300,301,310], where the structure of the Cummins equation is utilized.
Additional damping due to viscosity is identified from RANS experiments, then added to the radiation
term to give an overall linearized equivalent damping. State-space parameterizations are considered
for an HPA in Davidson et al. [193,300] and an OWC in Armesto et al. [301], and pseudo-spectral
parameterizations are considered for an HPA in Davidson et al. [310] and Genest et al. [221].
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Moving away from the Cummins equation structure to more nonlinear black-box type parametric
models, such as artificial neural networks (ANNs), autoregressive with exogenous inputs (ARX),
Hammerstein and Kolmogorov–Gabor Polynomial (KGP) models are investigated and detailed
in [304,305,307,308,312]. In this work, it is observed the purely black-box models, such as ANNs,
do not, in general, extrapolate from the training to validation data as well as models that contain some
shade of grey and connection to underlying physics. Volterra-type models, suitable for systems with
non-linear memory functions, are investigated in Van’t Hoff et al. [306] for an OSC device.

Although not explicitly hydrodynamic modeling, Gkikas et al. [302,303] present similar SID
methods for thermodynamic modeling of the nonlinear pressure fluctuations inside an OWC. Using the
wave elevation inside the chamber as a coupling link between the hydrodynamic and thermodynamic
parts, SID techniques are employed to develop a Hammerstein–Weiner block-structured model,
using a Volterra series for the dynamics. Similarly, Simonetti et al. [311] do not explicitly consider
hydrodynamic modeling, rather they identify an empirical model as a design tool, which directly gives
the power output for a given sea state, taking as input different design parameters. SID methods are
also used to obtain efficient mooring models, using data from computationally expensive FEM models
or physical experiments, as reviewed in [313], where the dynamics of the mooring systems have been
replicated by polynomials, Taylor series, Volterra models and neural networks.

5.1.3. Identification Data

The requirements of the measured signals for the identification of a WEC model are discussed
in Davidson et al. [314]. The input/output data used to determine the model must be sufficiently
representative of the system dynamics and span the range of frequencies and amplitudes likely to be
encountered during system operation. In the design phase for a WEC, there are two main options to
obtain the input/output data of the system dynamics: either scaled model experiments in PWTs or
using high fidelity NWT simulations. Comparison of these two options reveals a number of advantages
to using NWT experiments to obtain the identification data:

• Scale: NWTs offer the significant advantage of being able to test at full scale. The scaling issue is
a major drawback of using PWTs for SID of WEC models, since nonlinear effects may not upscale
correctly from PWT to full scale, as discussed in Sections 2.2.4 and 3.7.1, as well as in Cruz et al. [315].
However, numerically resolving some high fidelity models, such as RANS, at full-scale, can be
computationally expensive (see [67]). Therefore, it is vital the SID experiments are designed
to provide the maximum information in the minimum time (as discussed in [314]), otherwise
NLPF models or domain decomposition techniques may be required for longer duration SID
experiments in NWTs at full-scale.

• Reflections: NWTs are superior in eliminating undesired reflections from the tank walls contaminating
the SID experiments, with numerical absorption zones able to limit reflections below 1% [316], whereas
world-class PWTs can incur reflection coefficients of around 10% [315,317] in the wave propagation
direction, and often have no side wall absorption.

• Constraints and restraints: NWTs allow the WEC to be easily constrained to single DoFs, allowing
SID of each DoF separately if desired, whereas PWTs require complex mechanical restraints
to achieve this task, which introduces friction and alters device dynamics. The same is true
for external forces, which can be applied exactly to the WEC in an NWT, but require physical
actuators in a PWT which introduce some level of inaccuracy.

• Measurements: NWTs allow non-intrusive measurement of as many variables as desired,
with zero measurement noise, without requiring physical measuring devices to be added to
the system. Schmitt et al. [9] discuss a significant challenge of PWT experiments is to ensure that
the measurement instrumentation is as non-intrusive as possible and does not contaminate any of
the results. NWTs also allow easy measurement of some useful variables which are extremely
difficult/impossible to measure in a PWT, such as the exact pressure everywhere on the WEC
surface, or the fluid velocity and vorticity around the WEC.



J. Mar. Sci. Eng. 2020, 8, 35 35 of 65

• Cost: In the design phase of a WEC development, varying the WEC geometry may be necessary
for optimization studies, which can easily be implemented in an NWT through a few lines of
code, whereas a physical prototype needs to be manufactured for each geometry tested in a PWT.
Schmitt et al. [9] also discuss that a significant investment of resource and money often goes into
the design, manufacture, installation, and calibration of specialized pieces of PWT measurement
equipment often custom made for a particular WEC design and scale, whereas in an NWT, sensors,
actuators, and constraints can be arbitrarily added through a few lines of code. Furthermore, time
at a PWT facility can range from hundreds to tens of thousands of euros per day.

• Availability: Testing time in PWT facilities must be organized months in advance and is kept to a
tight schedule, whereas with the rise of cloud computing, NWT resources are always available,
multiple experiments can be run in parallel and testing time can be increased on the fly.

The main disadvantage to high fidelity NWT experiments is the substantial computational
requirements to obtain sufficiently long datasets to adequately train and validate the identified
models. However, these time consuming, computationally heavy, NWT simulations only need to be
run once, after which a parametric model can be identified, using the input/output data from the
NWT simulation. The parametric model can then used for future WEC design simulations, of the
same device geometry, in different sea states, PTO, control and/or mooring configurations et cetera,
at a fraction of the computation time. Nevertheless, the numerous advantages of using an NWT for
SID purposes highlights the importance of leveraging the methods reviewed in Sections 3 and 4 to
enable computationally efficient, high-fidelity, NWT simulations.

5.2. Probabilistic Models

A probabilistic model does not calculate a distinct WEC response to a particular input wave,
as is the case for deterministic models, but instead generates probabilistic quantities, such as mean
expected values, standard deviations, probability distribution functions et cetera, from a statistical
representation of the inputs (depicted in Figure 15). Therefore, this method is extremely efficient at
calculating statistical parameters, such as the average power, since multiple time-domain simulations
are required to build-up meaningful statistics, which by comparison can be generated in a single run
by a probabilistic model.

The first use of these types of probabilistic models for WEC analysis is presented in Falcao and
Rodrigues [318], where stochastic methods are used to model the power performance of OWC plants
and optimize the turbine size and rotational speed for maximum energy production. Assuming the
input sea states to be Gaussian, the air pressure inside the OWC chamber is regarded as the response
of a linear system comprising the chamber and Wells turbine. This approach has been used more
recently for the analysis of a floating OWC spar buoy in Gomes et al. [319,320]. Bachynski et al. [321]
also apply probabilistic modeling, using linear models, to enable computationally efficient design
and optimization of the geometry, mass distribution, mooring system, and PTO damping for an HPA.
In essence, these two cases [318,321] utilize a frequency-domain model for the system response and
assume the incident waves are a Gaussian process, which means that the WEC response is also a
Gaussian process (as the system is linear), allowing statistical properties to be easily obtained.

In the past decade a number of more advanced probabilistic models, which allow the inclusion of
nonlinear dynamics, have been applied to WEC analysis and are presented in Sections 5.2.1 and 5.2.2.

WEC

Spectral domain
model 

Probabilistic
representation of waves 

Probabilistic
representation of response 

Figure 15. General structure of a spectral domain model (reproduced from [322]).
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Table 8. Review of publications utilizing probabilistic methods for WEC simulation.

Ref. Method WEC Type Analysis

[318] FD OWC Optimization of turbine size and rotational speed

[220] SD OSWC Modeling vortex shedding and large amplitude effects

[321] FD HPA Geometry, mass distribution, and mooring design optimization

[323] SD HPA (Array) Modeling arrays and Coulomb friction

[324] SD OWC Validation of model against tank data

[325] SD OSWC Accommodate nonlinear WEC dynamics in an optimal controller

[326] SD OSWC Investigation of controllable surfaces

[319] FD Spar buoy OWC Statistical values of device dynamics and power output for an array

[327] SD HPA (Sphere) Modeling nonlinear hydrostatic stiffness

[328] SD Submerged PA Include nonlinear viscous drag and compare with other methods

[329] PC HPA Predicting long term extreme loads

[330] PC HPA Uncertainty quantification

[331,332] SD HPA/OWC Statistical linearization of nonlinearities

[320] FD Spar buoy OWC Design optimization

5.2.1. Spectral Domain

Spectral-domain (SD) models are based in the FD, producing results for a given sea state at a
fraction of the computational cost of time-domain simulations. However, SD models can be also be
applied to nonlinear systems, but the computational effort increases, requiring an iterative solver to
successively approximate and converge on the solution. A thorough overview of SD modeling for
WECs is given in Folley [322], which discusses that current SD models use Gaussian closure, which
assumes that the WEC response is Gaussian and the nonlinear force can be differentiated to enable a
quasilinear coefficient to be calculated via statistical/equivalent linearization. For example, the method
of Gaussian Closure is used in Nie et al. [325] to accommodate nonlinear WEC dynamics and complex
loss mechanisms in PTO, in the implementation of optimal control in stochastic waves. The technique
is demonstrated through a numerical example considering an OSWC with a hydraulic PTO.

Considering SD analysis of WECs, Folley and Whittaker [220] use equivalent linearization to
model the effects of drag forces and large-angle rotations for an OSWC. It was shown in these cases
that equivalent linearization produces a model that predicts a statistically very similar response to
time-domain models even for relatively high levels of nonlinearity. Subsequently, in Folley and
Whittaker [323], an SD model for an array of HPA WECs, with a Coulomb-friction type force, has been
developed and shown to provide a reasonable estimate of the statistical response of the system in the
majority of cases compared against tank data. In Folley and Whittaker [324] an OWC is tested in a
wave tank to produce validation data for an SD model comprising linear hydrodynamic coefficients
obtained from WAMIT, together with single-coefficient non-linear terms for the PTO and the entry/exit
losses of the water column. The OWC was tested in a range of representative sea-states with both
unimodal and bimodal spectra, and the SD model was shown to reproduce the performance of the
OWC accurately, with the power capture typically predicted within 5% of the experimental data.

Tom et al. [326] and Ding et al. [328] use SD models, including quasilinear drag coefficients
linearized from the quadratic nonlinear drag force. Tom et al. [326] investigate an OSWC with
controllable surfaces, whose time-varying geometry can increase capacity factor and reduce design
loads. The SD model is used to calculate load and power statistics and compared against a purely linear
analysis, and the authors conclude that the SD techniques provide a quick and efficient methodology for
evaluating the WEC performance in irregular waves at a mid-fidelity level. Ding et al. [328] investigate
a submerged HPA and compare the results of the SD model against a nonlinear time-domain model,
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for three different irregular sea states, observing differences in the predicted power outputs of less than
10%. Gunawardane et al. [327] investigate including the effect of nonlinear hydrostatic stiffness into an
SD model for a heaving sphere WEC, comparing the results against time- and FD models. Compared
to the FD model, the SD model is shown to closely match the time domain results across a greater range
of sea states, capable of accurately reproducing the results in all but the most extreme waves. Silva et al.
utilize statistical linearization for efficient nonlinear modeling of an HPA [331] and OWC [332] showing
close agreements with the power spectrum density obtained from a time-domain simulation.

5.2.2. Polynomial Chaos

Unlike the SD method, polynomial chaos (PC) is based in the time-domain, providing an efficient
surrogate model for stochastic differential equations. PC represents the stochastic process with a series
of orthogonal polynomials, which reduces the dimensionality of the system and leads to exponential
convergence of the error [333]. Traditionally, to obtain meaningful statistics for such stochastic systems,
containing random inputs and/or uncertainty in the parameters, requires thousands of simulations
using brute-force approaches, such as the Monte Carlo method where the accuracy scales inversely
with the square root of the number of simulations. PC provides an alternative approach to obtain the
statistical values, with comparable accuracy but orders of magnitude less computation.

The PC method is highly efficient for uncertainty quantification, able to effectively describe
the input uncertainties, how they propagate through the system, their influence on the dynamics,
and provide probability distributions of the system outputs. PC has been applied to uncertainty
quantification in a number of studies related to nonlinear hydrodynamics. Ge et al. [334] implement
the PC method in nonlinear shallow-water flows for long-wave transformation over a submerged
hump. The uncertainty is introduced as the mean and standard deviation of the heights of the input
wave and the hump, respectively, producing almost identical results to the Monte Carlo method,
but at small fractions of its computing cost. Kreuzer and Solowjow [335] apply a preliminary study
of PC for the heave motion of a cylinder in random seas, utilizing a linear Cummins model for the
hydrodynamics so that an FD model can also be used to benchmark the results against, finding an
exact match for the mean and an 8% difference in the variance, when using only a 1st order polynomial.
Bigoni et al. [336] present an FNPF model for WSI and use PC to consider the sensitivity of the
free-surface solution and loads on a structure, due to a number of uncertainties that are likely to
appear in experimental settings. The uncertainties include the bathymetry due to lack of precise
knowledge of the bottom topography or the unknown action of sedimentation, the input wave
characteristics due to inaccuracies in the wavemaker systems, and the water height due to evaporation
and water leakage/spills. Lim et al. [337] utilize PC to study the long-term extreme surge motion
of a simple moored offshore structure, considering uncertainty in significant wave height and peak
period characterizing the sea state conditions, and in the uncertainty due to the application of random
phases when generating a time-domain signal from the frequency components in a given sea spectrum.
Comparing exceedance probability curves obtained from PC against those obtained from Monte
Carlo simulations shows similar results but that the Monte Carlo method required 1000 times more
simulations than then PC method.

The PC method has very recently been applied to WEC analysis in Nyugen et al. [329] and
Parades et al. [330] considering HPAs. In [329], PC is leveraged to calculate long-term extreme loads,
which traditionally require extensive simulation due to their low probability of occurrence. The PC
method requires 49 WEC simulations to produced comparable results to the Monte Carlo method with
105 simulations. [329] concludes that the PC method shows promise for fast, efficient and accurate
assessment of extreme loads during the design process. Parades et al. [330] investigate the influence
that uncertainty in the PTO stiffness and damping coefficients has on the mooring tension, the body
motions, and the absorbed power. By utilizing PC, only 100 WEC simulations were required to
gain the equivalent information of 3000 time-domain simulations with varying PTO stiffness and
damping coefficients.
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5.3. Nonlinear Frequency Domain

The nonlinear frequency domain (NLFD) approach is a form of Galerkin method [338,339]
that projects the system inputs and outputs onto a Fourier basis, to represent the nonlinear dynamics
in the FD as a harmonic balance equation. The resulting set of nonlinear equations can be solved using
a gradient-based technique, to compute the nonlinear steady-state response of a WEC to a periodic
excitation signal. The effectiveness of the method, for the case of nonlinear oscillators, compared to
statistical linearization and Monte Carlo simulation is shown in Spanos et al. [338]. The application of
this method to WEC modeling was first demonstrated in Merigaud and Ringwood [340].

Although slower than the SD approach, the NLFD has significant benefits in terms of accuracy,
range of applicability and the ability to produce time-domain results. The NLFD can handle strong
nonlinear dynamics, provided the WEC outputs remain smooth, and is, therefore, unsuitable for
applications such as latching control or extreme conditions where end stops collisions may occur.
In contrast to time-domain integration, the NLFD formulation only allows for the consideration of
periodic steady-state regimes and does not consider transients.

The issues associated with the practical implementation of the NLFD technique are detailed,
and illustrated in Merigaud and Ringwood [341], presenting an example case of an HPA with quadratic
nonlinear viscous and NLFK forces. The NLFD method is shown to run more than 50 times faster than
a Runge-Kutta 2 (RK2) time integrator for the same level of accuracy. However, for an example case
with Coulomb damping in the PTO and a correspondingly non-smooth WEC output, the NLFD takes a
long time to converge, and in fact, takes longer than the RK2 integrator and does not achieve the same
level of accuracy. The NLFD method is extended to multiple DoF in Novo et al. [342], considering the
pitching hull motion and the internal gyroscope dynamics of the ISWEC device operating at a site in
the Mediterranean Sea as a case study. The study showed that the NLFD method is sensitive to the
algorithm starting point and found for some highly energetic sea states the method did not converge.
However, for the majority of the sea state, it is concluded that computational gains of between one and
two orders of magnitude can be expected with respect to RK2. Merigaud and Ringwood [343] then
apply the method in the synthesis of optimal control for an OSC.

In addition to the WEC hydrodynamics, Wei et al. [344,345] apply the NLFD method to the PTO
system in the Ocean Grazer, comprising pistons and pumps. It is envisioned that such a device could
comprise hundreds of floating elements and pistons, thus necessitating a computationally efficient
modeling method for its analysis. In [344], a single floater with pumping unit is investigated and
the numerical simulations show good agreement with experimental results, able to assess the power
output well but not the high-frequency responses such as slamming. Of interest is the ‘sticking’
phenomena in the PTO pumps, when the wave excitation force is lower than the pumping force,
which can only be captured by simulations using a high number of Fourier components and for which
case the computational cost increases dramatically since the Fourier series of discontinuous functions
converges very slowly. In [345] the method is then applied to an array of 18 units.

Table 9. Review of publications utilizing NLFD models for WEC simulation.

Ref. WEC Type Analysis

[340] OSC + HPA (Sphere) Demonstration of modeling approach

[341] HPA (Sphere) Model’s ability to handle different nonlinearities

[343] OSC Computationally efficient control

[346] OSC + HPA (Sphere) Effect of spectral shape of wave spectrum on power output estimates

[342] ISWEC Comparison against MDoF time-domain models

[344] Ocean Grazer PTO system performance of a single device

[345] Ocean Grazer PTO system performance for full array
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6. Discussion

Selecting an appropriate WEC simulation tool can depend on a number of factors, which are
discussed here. The requirements of a WEC simulation tool were detailed in Section 1.2, namely
computational, fidelity, and flexibility requirements. The computational and fidelity requirements are
discussed in Section 6.1 with respect to the different types of end-use for which the WEC simulation
tool is to be applied. The flexibility requirements pertain to the different classes of WEC devices
and their various operational principles, for which certain simulation methods may or may not be
well suited, as discussed in Section 6.2. The role of open-source software in the next generation of
WEC design tools is discussed in Section 6.4, and consideration of computing hardware discussed in
Section 6.5. A summary is provided in Section 6.6, where the strengths and limitations of the different
methods reviewed in this paper are tabulated.

6.1. Applications

In general, there is a trade-off to be made between computational efficiency and level of fidelity.
Selecting the simulation tool which provides the appropriate trade-off between these two requirements
depends on the type of WEC simulation application under consideration. The requirements are
different for at least three different end uses of a WEC simulation tool, summarised in Table 10 and
discussed in Sections 6.1.1–6.1.3.

Table 10. Requirements of the different end uses of a WEC simulation tool.

Application Time-Span Spatial Domain Hydrodynamic Resolution

Section 6.1.1 WEC operation

Vast—interested in
characterizing and optimizing
the device performance across
all sea states at a given location

Small—local effects only
High—accurate modeling
required for assessment of
device performance

Section 6.1.2 WEC survival

Small—interested in the subset
of all sea states, and wave series
within those sea states, which
give rise to maximum loads

Small—local effects only

Very high—must be able to
capture the very nonlinear
waves and WSI associated
with extreme wave
conditions

Section 6.1.3 WEC farms
Medium—time averaged
interactions between the wave
farm and the environment

Very large—must
simulate the entire
domain of the wave farm

Medium—interested in the
average effects of the
interactions between fully
designed WECs in
arrays/farms

6.1.1. WEC Design—Productivity, Loading, and Survival Characterizations in Operational Sea States

There are a wide variety of sea states at a given location, which must be simulated to fully
characterize the potential energy output, mooring loads, fatigue analysis, optimal PTO sizing et cetera,
of a candidate WEC design. To accommodate the large amount of simulation required, this case has
traditionally been reasonably well served by LPF and Cummins models, particularly in the frequency
domain, as well as the NLFK approaches in the time domain (the low-fidelity high-speed end of
the spectrum introduced in Section 1.3). Nevertheless, there are a number of shortcomings in these
approaches that motivate a search for a minimal increment to a higher fidelity method. In addition to
the problems associated with neglecting viscosity (discussed in Section 2.1.1), the main shortcomings
of these methods is that the LPF approach assumes small body displacements (including small body
rotations) and calculates the wave forces on the mean wetted surface, this assumption is often not
valid especially in moderate and large waves. (The NLFK method calculates the FK forces on the
instantaneous wetted surface but still calculates scattering and radiation forces on the mean wetted
surface). Problematic aspects of simulation performance related to these assumptions include:

• Wave excitation forces are overestimated in all but the smallest waves.
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• When body rotations are large there is no justifiable method for determining whether to apply
the calculated wave forces in a reference frame that moves with the body or a reference frame
that is fixed to the body’s mean position. Neither approach is correct and both approaches result
in incorrect results.

• There is no automatic way to enforce the Budal limit [347], this leads to simulation results that are
invalid due to unrealistically large amplitudes of motion.

• Because the Budal limit is not enforced estimated performance of designs that would violate
this limit is not properly penalized so geometry optimizations that converge on these designs
are not reliable. This is a particular problem for objective functions that favor smaller devices
(e.g., energy yield per surface area or energy yield per cubic displacement). In the worst instances,
this issue leads to convergence on physically meaningless solutions such as WEC devices with
zero area/volume/stroke.

A better method that resolves these difficulties will be non-linear and as a minimum will be
body-exact with respect to forces due to both FK pressure and wave scattering effects. For example,
Todalshaug [348] further elaborates on the Budal limit, discussing and demonstrating the dependence
of the maximum power capture on the wave radiation pattern and the radiation resistance, which
highlights the importance of accurately capturing the wave scattering effects. To this end, the weakly
nonlinear methods, in Section 3.5, appear to be an appropriate selection among the methods reviewed
in Section 3.

Nevertheless, while the high fidelity time-domain models, such as the FNPF and weakly nonlinear
methods, can return accurate calculations for the WEC response, they are less able to provide good
statistical estimations for the quantities of interest, such as the yearly energy yield. Building reliable
statistics requires a very large number of simulations, spanning the various sea states as well as
the possible realizations of each sea state (different random phases for each frequency component).
Alternatively, the computationally efficient modeling methods in Section 5 seem the most well suited to
this task. Indeed, the SD approach can automatically give a statically relevant estimation of the yearly
energy yield, from one simulation. Therefore, the modeling approaches able to include nonlinear effects
whilst allowing an FD/SD simulation, would be very attractive. However, one possible limitation for
these methods may be in enforcing constraints on the solution variables, such as maximum allowable
displacements or PTO forces et cetera. Again, in relation to the Budal limit, Todalshaug [348] presents
the upper bounds on power capture when considering physical constraints such as limits on the
maximum stroke-length.

It is worth mentioning, that in addition to the fidelity of the WEC simulation tool, the accuracy
of the simulations for WEC design also depends on the accuracy of the representation of the input
sea states. Real sea conditions are highly complex, requiring some level of parameterization to enable
an efficient representation to be utilized by computational models. Therefore, there exists a similar
trade-off in fidelity versus computational complexity, when considering the description of the input
wave signals to the WEC simulations. This is examined in Kofoed and Folley [349] and in Merigaud
and Ringwood [346], whose findings can be summarized that efficient WEC design simulation requires
a balance between the accuracy of the wave climate representation, the accuracy of the WEC simulation
tool and the computational demands of the calculation.

6.1.2. WEC Design—Loading and Survival Characterizations in Extreme Sea States

A successful WEC design must reliably address the loading and survival characterizations in
extreme sea states, while avoiding over-predictions of these conditions that lead to increased costs.
Determining structural and hydrodynamic loads for WECs is detailed in Vaughan and Ferreira [350],
which advises that NLPF codes have been shown to perform well in large nonbreaking waves (see for
example the results in Greenhow et al. [69]), but for the highly nonlinear phenomenon of wave
breaking, green water, and violent body motions, RANS should be used. This advice agrees with that
given in the review of modeling WEC survival in extreme sea states by Coe and Neary [19].
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However, the affordability of applying RANS is questionable, potentially resulting in inadequate
coverage both in terms of the number of sea states and length of individual runs accomplished.
Therefore, it is vital that a simulation test campaign requires the minimum number of sea states with
the shortest possible simulation lengths to be handled by the RANS models.

• Simulation length—the creation of statistically derived “design waves” to represent entire sea
states in limited time lengths has been a subject of many studies in naval architecture, with detailed
literature reviews presented in [351,352]. For example, the NewWave approach is a popular method,
which results in a focused wave representing the average shape of the largest wave derived from
a given wave spectrum. The usage of NewWaves for RANS simulations of WEC survivability is
demonstrated in Ransley et al. [353] and is also employed as the input waves for the blind tests
in [125,247] which compare the performance of a range modeling approaches.

• Sea state selection—One common method used to estimate extreme conditions employs
environmental contours of extreme conditions, as reviewed in Edwards and Coe [354]. However,
it is not always the largest wave that causes the largest load. For example, Harnois et al. [355]
use field test measurements to investigate the extreme load analysis of WEC mooring systems
and observe that that peak mooring loads do not occur for the sea states on the external contour
line of the measured sea states, but for the sea states inside the scatter diagram. This agrees with
the finding of Yu et al. [356], who discuss that the extreme wave load does not always occur at the
largest wave, but instead, it is often a series of specific wave trains that cause extreme loads due
to the resulting combination of the instantaneous WEC position and wave elevation. In addition,
Coe and Neary [357] discuss that for different WEC components, the largest load may happen
at different wave environments. Therefore, it is essential to develop a systematic approach to
identify the critical sea states that are likely to cause an extreme wave load. Such a systematic
approach necessitates utilizing a combination of tools, as suggested in the review by Coe and
Neary [19] and later demonstrated in Van Rij et al. [358].

A set of WEC simulation tools, with a range of fidelities, are therefore required for the application
of loading and survival in extreme sea states. Fast, low-fidelity models should be employed for
scanning purposes, to identify the sea states which are likely to result in the most extreme WEC
responses. Then the more computationally heavy, high-fidelity models are required for accurate
analysis of those scenarios. This approach is demonstrated in Quon et al. [359], where it is termed the
most likely extreme response method.

As revealed by the literature review, one possibility to reduce the computational requirements of
the RANS simulations is through domain decomposition. One case where this may be particularly
beneficial is for slamming loads, which can represent the largest forces on the structure and must,
therefore, be accurately estimated during the simulation campaign. For such slamming loads,
air compressibility can be important, as demonstrated by Dias and Ghidaglia [360] who present
a review on the evaluation of impact pressure for slamming phenomena in a range of FSI applications.
In one section of the review, Dias and Ghidaglia focus on slamming impacts for an OSC, where
they conclude compressible effects could be clearly observed due to the presence of bubble swarms.
Therefore, incompressible to compressible domain decomposition methods, as described in Section 4.6,
could be an efficient tool for these scenarios.

6.1.3. Wave Farm Design—Productivity Characterization of a Farm Using Already Very Well
Characterized WEC Technology

When WEC technologies are fully designed and mature, and the WEC characterization is complete,
then the focus of requirements switches away from a simulation of the detailed behaviors of the WEC
and towards the calculation of the time-averaged interactions between the environment and the wave
farm. This objective here is the calculation of the wave farm energy yield and on optimizing the layout
of the WEC machines within the farm.
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The domain decomposition methods, reviewed in Section 4, have recently been utilized for this type
of application and show good potential. In earlier reviews for WEC array modeling, Folley et al. [12]
and De Chowdhury et al. [13], the main methods available at the time could not implicitly include
nonlinear dynamics (with the exception of NLFK). The semi-analytical methods (see Child [361] for
more details) are not capable of including nonlinear dynamics, whereas the phase-resolving wave
propagation (see Troch and Stratigaki [362]) and phase-averaging wave propagation (see Folley [363])
array models can only explicitly include nonlinear dynamics through their absorption layers and
source strengths. NLPF and RANS were discussed, however, they had not been applied to WEC array
simulation at the time due to their large computational requirements for this application. However,
the domain decomposition methods allow the NLPF and RANS models to be nested inside of the wave
propagation models to implicitly consider the nonlinear dynamics with reasonable computational
effort. It is also worth mentioning that in recent times, higher-order NLPF methods have been shown
to simulate very large scale areas with computationally feasible run times, this could be a suitable
standalone method for the next generation of simulation tools for WEC farm design.

6.2. Device Type

Ideally, a WEC simulation tool should be suitable for diverse machinery types, for example:

• Wave activated body/OWC/overtopping device
• Fixed/floating
• Surface piercing/submerged
• Point absorber/larger terminator or attenuator
• Near shore/offshore
• Rigid body/flexible membrane
• Smooth outputs/latching control or end-stop collisions

However, in some cases, the selection of the best WEC simulation tool can be device-dependent.
Although some tools may be good at simulating all types of WECs and therefore satisfy the flexibility
requirement, other tools may be extremely well suited to a particular situation, able to provide
computational savings without sacrificing accuracy. For example, the NLKF method can provide
extremely efficient analytical solutions for axisymmetric devices. On the other hand, due to the vast
spectrum of WEC concepts, some devices require unique attention and are unable to be accurately
modeled by an otherwise highly flexible simulation tool. For example, the PF methods would not
work for the overtopping type WECs, which would require something akin to the Euler equations in
Section 3.2. The strengths or limitations of the reviewed simulation methods for different machinery
types are included in the table in Section 6.6.

6.3. Higher-Order Waves

Figure 3 in Section 2.1.2 presents the range of water depths and wave heights for which linear
theory is valid. It should be noted, however, that this figure says nothing about WSI but only about
the waves themselves. In practice, for WEC simulation, LPF is used far outside the linear region
shown in this diagram, with reasonably good results. The reason for this is partly due to the speed of
computation and the lack of alternative well-established methods of calculating WSI, but also partly
due to the low importance of higher orders in power estimation.

Many of the higher-order waves have no impact on power generation because the higher
harmonics in the waves are filtered out by the WEC and PTO equipment, the WEC is a low pass
filter. For power production purposes, in most cases, the 2nd order, 3rd order waves, for example,
can be modeled as linear. However, in Section 3.5.2, a number of studies showed that special curved
geometries could leverage the higher-order waves to increase power production.

Higher-order waves are more important for structural loading, mooring design and survival than
they are for power estimation, but currently there are no good methods for calculating these WSIs.
A major preoccupation with higher-order waves is prediction of crest heights for oil and gas platform
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design, this is important due to the issue of slamming on the underside of offshore platforms. In wave
energy, typically the equipment is mostly submerged, if not fully submerged, and usually with no
downward facing freeboard surfaces so that predicting crest heights is irrelevant for most WECs.

6.4. Open-Source Software

In scoping for efficient nonlinear hydrodynamic models for WEC design, it is observed that many
models are available through open-source software. For example, the domain decomposition between
NLPF and SPH in [245] is done by utilizing the three open-source software: OceanWave3D, DualSPHysics,
and Python. Likewise, the domain decomposition between NLPF and RANS in the open-source release of
Grid2Grid [264], provides an interface example with the open-source CFD platform OpenFOAM. Indeed,
OpenFOAM features very heavily throughout the review, with 52 papers utilizing this open-source
software. Table 11 collates the publications utilizing different open-source software throughout this review.

Therefore, when selecting a framework with which to perform numerical analysis, it is worth
considering the large user bases and the continued drive and development of these open-source
software platforms, with increasing functionality being added, new toolboxes being shared and
different solvers coupled together. Ensuring that the selected numerical analysis framework is
compatible with these open-source platforms, able to incorporate the current and future functionality,
would be a prudent decision. Most likely the next generation of design tools for WEC analysis
will leverage and build upon the countless man-years of development freely provided by these
open-source software.

Table 11. Review of publications utilizing open-source software.

Software References Software References

OpenFOAM [9,26,27,34,35,45–47,54,56,57,61,67,125,139,143,146,159,190,193,217,221,232,246,247,258–262,
265–270,272–275,277,284,300,301,304,305,307,308,310,314,353,364] SPHysics [242–245]

Nemoh [172,179,189,190,192,205,206,216,235–241,249,250,344,346] Gmsh [123,180]

OceanWave3D [129,131,132,134,242–245,250,266,268] Grid2Grid [264,265]

WEC-Sim [192,195,330,358,359] ExaFMM [91]

SWASH [149–152,162] Palabos [53]

HOS Ocean/NWT [100,103,132,201] Nektar++ [120]

6.5. Hardware

Section 1.4 shows that nearly three decades have passed between the first hydrodynamic modeling
review and the next and that numerous reviews have been performed this current decade. Arguably,
the reason for this increased activity is the proliferation of access to affordable computing resources
capable of handling nonlinear modeling techniques higher fidelity than the standard LPF methods
that were routinely used in the preceding decades. When considering the next generation of WEC
design tools, it is worthwhile also considering the next generation of computing hardware. However,
this review has not deeply considered this topic.

6.5.1. GPUs

Some methods are being developed for massive parallelism on GPUs. Stansby [280] states that the
aim of SPH is to provide a general automatic capability for WSI on the inexpensive computing of GPUs
(and multi-GPUs) running in practical computing times, O(hours). Significant work has been applied
for the efficient massive parallelization and GPU acceleration of the OceanWave3D code, as detailed in
Engsig-Karup et al. [365], demonstrating the performance enhancements achievable using standard
consumer desktop CPU–GPU hardware systems, by leveraging the immense multi-threading capability
of the GPU device. The possibility of using the proposed wave model for real-time analysis is discussed
(based on the hardware in 2012), concluding that faster than real-time was already possible and that
large 3D domains could be simulated 10 times slower than real-time.



J. Mar. Sci. Eng. 2020, 8, 35 44 of 65

Another example of forethought in the code development of hydrodynamic models to leverage the
strengths of GPUs is the mixed-precision strategy in Glimberg et al. [366]. From a memory perspective,
using single-precision instead of double precision numbers (32bits vs 64 bits) halves the storage and
bandwidth requirements on all computing hardware. However, the computational savings are more
hardware dependent. Whereas, most modern CPU architectures would experience a doubling in speed
for single versus double precision execution [367], the speed increase on GPU architectures might be
more enhanced. For example, Glimberg et al. [366] state that on a TESLA S1070 computing system,
single-precision operations are up to twelve times faster. Thus, they use the single-precision values in
parts of the iterative schemes to speed-up convergence.

One of the most important developments to enable the computational feasibility of FNPF methods is
the multigrid approach introduced in Sections 3.3.5 and 3.3.6. The advantages of the multigrid approach
in terms of parallelism and scalability is presented in Glimberg et al. [368], where they demonstrate using
8192 GPUs to enable large scale and high-resolution nonlinear marine hydrodynamics applications,
stating unprecedented performance and scalability for a system of equations that is historically known as
being too expensive to solve in practical applications.

6.5.2. A Note on Parallel Processing

In CFD applications much experience has been gained with parallelization of calculations.
The benefit of parallelization is reduced “wall clock time” to solve a specific problem at the cost
of application of increased computing power. In many CFD applications, this is a simple cost-benefit
calculation. However, in wave energy, this cost-benefit calculation is not as straightforward and the
opportunity costs of parrallelization must be considered. In wave energy the environmental inputs are
stochastic so that a large number of runs is needed to determine a WEC response to the characteristic
waves at a given location, add to this that many multiple problem geometries should be considered,
that each of these geometries may have many multiple decision variables that significantly alter the
dynamic response of a WEC (for example inertia properties and power take off control system settings),
in addition, it is arguable that more than one location should be considered. As a consequence of this
quantity of runs a wave energy simulation or optimization effort is already parallel even if the fluid
flow calculation program is single-threaded. This is an example of a class of parallelization known
as “perfectly parallel,” so-called because it is so easy to parallelize the problem by running the same
program with different input data on each thread of the available hardware (no message passing,
shared memory or other complications are needed). The opportunity cost of parralelization of a fluid
flow calculation in wave energy is that it blocks this alternative and competing form of parallelization
that is built into the wave energy simulation. This opportunity cost and trade-off have received little
attention in the literature. It is possible that, in this context, the optimal number of threads to use
for the fluid flow problem is one. The consequence of this observation is not that RANS type solvers
should be run single-threaded, experience shows that this would not be practical. The authors would
like to draw attention to this trade-off, to the need to consider this in designing a new WEC simulation
tool and to the possibility that a desirable property in the specialist WEC simulation tool sought in this
paper might be the feasibility of single-threaded fluid flow calculations.

6.6. Summary of Methods

Table 12 provides a succinct summary of the strengths and limitations for the methods reviewed
in Sections 3–5.
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Table 12. Comparison of the reviewed efficient nonlinear hydrodynamic modeling methods.

Strengths Limitations

Euler Equations
• Can simulate wave breaking, green water etc. • Simulates both air and water phases
• Can include drag and vortex effects • Implementable in CFD solver frameworks
e.g., OpenFOAM

• Computationally expensive •Waves must be solved and propagated to WEC location

FNPF
• Large amplitude waves and body motions permitted • Currently the focus of much
research and development • Flexible/deformable bodies can be easily handled by
FEM/SEM •Well suited for use in domain decomposition with RANS

• Computationally feasible with adequate hardware • Waves must be solved and propagated
to WEC location • Design of efficient and flexible methods to handle both the nonlinear wave
propagation and wave-body interactions is non-trivial, as FNPF NWTs have traditionally been
designed to focus on one or the other.

Shallow water • Efficiency is gained by eliminating/reducing the vertical dimension and by
representing the free-surface as a single-valued function • Valid in the nearshore

• While this method has been shown to work effectively for floating bodies, it is unclear if this
could be applicable to submerged bodies • Loses validity in the deep water • Waves must be
solved and propagated to WEC location

Weak scatterer
• Large body motions • Nonlinear steep incident waves • Incident wave does not need
to be solved and propagated •Mesh only needs to be refined close to the WEC and large
cells can be used elsewhere

• Valid for small perturbed waves • Computational expense in updating the computational
domain at each time step, like FNPF

WNPF
• FD possible • Efficient time-domain simulations since the hydrodynamic coefficient
matrices are the same for every time-step, thus only need to be set-up and inverted once.
• Incident wave does not need to be solved and propagated

• Although an improvement upon LPF, this method still contains limitations on the wave
steepness and amplitude of body motion

Time-varying parameters
• Computationally efficient • Can precompute the required hydrodynamic coefficients
offline beforehand and use look-up tables/interpolation during simulation • Can input
wave signal directly, rather than generated at boundary and propagated to the WEC

• Body nonlinear only, with linear assumptions still applied on the input waves •Might only be
suitable for NLFK forces, since implementation of time-varying linear models for radiation and
diffraction forces is unclear due to memory effects and convolution integrals in time.

NLFK • Computationally efficient • Can consider nonlinear/steep waves • Can input wave
signal directly, rather than generated at boundary and propagated to the WEC

• Only useful for WEC geometries for which the NLFK forces are significant • Not applicable for
fully submerged devices • Linear wave radiation and diffraction forces

Domain decomposition

• Can provide high fidelity WSI equivalent to RANS and better wave propagation
modeling, for less computational effort than RANS • Can be used for extreme and
survival conditions • Can be used for large spatial scales considering WEC arrays and
wave farms

•Computationally expensive • Two-way coupling methods not yet mature/widely demonstrated

Parametric models identified
from data

• Computationally efficient time-domain simulations with fidelity equivalent to the
data used to identify the model • Can input wave signal directly, rather than generated
at boundary and propagated to the WEC

• Requires high fidelity training data set spanning the frequency and amplitude ranges
• Models may not accurately extrapolate to input conditions outside the range which they were
trained upon

Spectral Domain • Extremely fast calculation of statistical values, such as mean annual power output etc.

• No temporal responses • Unable to model monochromatic waves • Only valid for Gaussian
inputs • The accuracy of the SD model decreases with the deviation from a Gaussian response,
therefore unsuited to some nonlinear forces, such as abrupt end-stop collisions, latching
control etc.

Polynomial chaos • Can test wide ranges of design variables, without simplifying the physics involved. • Restricted to relatively low number of dimensions in the parameter space (curse of
dimensionality) • Smoothness restrictions on the quantity of interest

NLFD
• Can produce time-domain results an order of magnitude faster than traditional
Cummins equation methods • Can input wave signal directly, rather than generated
at boundary and propagated to the WEC

• Linear assumption on input waves • WEC outputs must remain smooth, therefore cannot
handle abrupt end-stop collisions, latching control etc • Periodic steady-state responses only
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7. Conclusions

This paper explores solutions to the need for reliable, robust, and affordable simulation of WEC
technology. The review focused on CFD methods intermediate to RANS and LPF, due to the contrasting
weaknesses of the RANS and LPF methods, the former being high fidelity but low speed and the later
being low fidelity but high speed.

• A variety of nonlinear PF methods, with increasing levels of complexity, are available or under
development. However, a general means of robustly including viscous effects to the PF-based
simulations does not appear present and is likely to be important for a broad range of WEC
simulation cases.

• A particularly promising approach, gaining increased attention and popularity, is domain
decomposition, where lower-fidelity models are used in the bulk of the simulation and are
coupled to more computationally expensive high fidelity models that are localized to the domains
of interest. In particular, the nesting of RANS models inside of NLPF models, yields a rigorous
method of including the effects of viscosity, without incurring the computational overhead of a
full RANS simulation.

• Surrogate modeling appears to have good potential, allowing computationally efficient models
to be identified which can encapsulate nonlinear behavior with similar fidelity to data they are
trained upon.

• The best choice of simulation tool can depend on the particular application or device type, but for
most applications, a combination of tools will be most likely required. Although this could
potentially put strain on developers/engineers, due to the requirement of purchasing and learning
to use multiple tools, a push towards development and sharing of open-source WEC simulation
software can be noted throughout the community, which would reduce the aforementioned strain
on developers/engineers.

• Although this review focused on simulation methods more computationally efficient than RANS,
it can be stated that RANS modelling is still required as an integral part for many of these more
efficient simulation methods. For example, to provide system identification data for viscous
effects. RANS and other high fidelity models will still need to play an important role and
be used for model identification, inner domains for domain decomposition methods, and for
extreme/survival testing.

• Judging computational feasibility should be done in line with respect to modern and future
computing hardware architecture, with a paradigm shift in high-performance computing to
include heterogeneous CPU-multi GPU architectures. Practical run-times may be achievable
depending on the computing hardware at hand, investment to a particular method should ensure
its ability to leverage such facilities in the future.
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Abbreviations

The following abbreviations are used in this manuscript:

ALE Arbitrary Lagrangian–Eulerian
ANN Artificial Neural-Network
ARX AutoRegressive with eXongenous inputs
BEM Boundary Element Method
CFD Computational Fluid Dynamics
CPU Central Processing Unit
DoF Degrees of Freedom
ECN Ecole Centrale de Nantes
FD Frequency Domain
FDM Finite Difference Method
FEM Finite Element Method
FK Froude–Krylov
FMM Fast Multipole Method
FNPF Fully Nonlinear Potential Flow
FPSO Floating Production Storage and Offloading
FVM Finite Volume Method
GMRES Generalized Minimal Residual
GPU Graphical Processor Unit
HOS High Order Spectral
HPA Heaving Point Absorber
HPC Harmonic Polynomial Cell
KC Keulegan–Carpenter
KGP Kolmogorov–Gabor Polynomial
LB Lattice Boltzmann
LPF Linear Potential Flow
MEL Mixed Eulerian-Lagrangian
NLFD Nonlinear Frequency Domain
NLFK Nonlinear Froude–Krylov
NURBS Non-Uniform Rational B-Splines
NWT Numerical Wave Tank
OSC Oscillating Surge Converter
OWC Oscillating Water Column
PF Potential Flow
PC Polynomial Chaos
PTO Power Take-Off
PWT Physical Wave Tank
QALE Quasi Arbitrary Lagrangian–Eulerian
RANS Reynolds Averaged Navier–Stokes
SD Spectral Domain
SID System Identification
SEM Spectral Element Method
SPH Smoothed Particle Hydrodynamics
SWENSE Spectral Wave Explicit Navier-Stokes Equations
TD Time Domain
TPL Technology Performance Level
TRL Technology Readiness Level
WNPF Weakly Nonlinear Potential Flow
WSA Weak-Scatterer Approximation
WSI Wave-Structure Interaction
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